A UWB 3D Localization Algorithm Based on Residual Weighting

Author(s):  
Yonggang Zhang ◽  
Feng Shen ◽  
Qi Liu ◽  
Wenqiang Li

The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


2014 ◽  
Vol 988 ◽  
pp. 489-497 ◽  
Author(s):  
Dong Myung Lee ◽  
Ho Chul Lee ◽  
Yun Hae Kim

In this paper, the 3 Dimensional (3D) localization system based on extension of beacon nodes and segmentation of coordinate space is proposed and the performance of the system is analyzed. The main functions in the 3D localization system are 1) the equations for calculating the location coordinates of the 3D localization system by intersection of 3 sphere equations; 2) the extension concept of beacon nodes; 3) the compensation scheme for the 3D localization algorithm; 4) calculation of the location coordinate in selected segmented space. The distance error (Derror) between the beacon and mobile node can be derived and it is used to performance metric for proposed system. It can be inferred that 1) LSCA is more stable and reliable system than LSNOCA, and it can be more useful to the practical localization system; 2) The Derror is the smallest value when the segmented distance of 3D space for the 3D localization system is set to be 1m; 3) The Derror when the height of the beacon node is 1.5m is largely lower than when that is 2.3m.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Baohui Zhang ◽  
Jin Fan ◽  
Guojun Dai ◽  
Tom H. Luan

Location information acquisition is crucial for many wireless sensor network (WSN) applications. While existing localization approaches mainly focus on 2D plane, the emerging 3D localization brings WSNs closer to reality with much enhanced accuracy. Two types of 3D localization algorithms are mainly used in localization application: the range-based localization and the range-free localization. The range-based localization algorithm has strict requirements on hardware and therefore is costly to implement in practice. The range-free localization algorithm reduces the hardware cost but at the expense of low localization accuracy. On addressing the shortage of both algorithms, in this paper, we develop a novel hybrid localization scheme, which utilizes the range-based attribute RSSI and the range-free attribute hopsize, to achieve accurate yet low-cost 3D localization. As anchor node deployment strategy plays an important role in improving the localization accuracy, an anchor node configuration scheme is also developed in this work by utilizing the MIS (maximal independent set) of a network. With proper anchor node configuration and propagation model selection, using simulations, we show that our proposed algorithm improves the localization accuracy by 38.9% compared with 3D DV-HOP and 52.7% compared with 3D centroid.


2017 ◽  
Vol 13 (09) ◽  
pp. 69 ◽  
Author(s):  
Lianjun Yi ◽  
Miaochao Chen

<p>Wireless sensor networks (WSN), as a new method of information collection and processing, has a wide range of applications. Since the acquired data must be bound with the location information of sensor nodes, the sensor localization is one of the supporting technologies of wireless sensor networks. However, the common localization algorithms, such as APIT algorithm and DV-Hop algorithm, have the following problems: 1) the localization accuracy of beacon nodes is not high; 2) low coverage rate in sparse environment. In this paper, an enhanced hybrid 3D localization algorithm is designed with combining the advantages of APIT algorithm and DV-Hop algorithm. The proposed hybrid algorithm can improve the localization accuracy of the beacon nodes in dense environments by reducing the triangles in the triangle interior point test (PIT) and selecting good triangles. In addition, the algorithm can combine the advantages of APIT algorithm and DV-Hop algorithm localization algorithm to calculate the unknown node coordinates, and also improve the location coverage of the beacon nodes in sparse environment. Simulation results show that the proposed hybrid algorithm can effectively improve the localization accuracy of beacon nodes in the dense environment and the location coverage of beacon nodes in sparse environment.</p>


Sign in / Sign up

Export Citation Format

Share Document