Features of computer modeling of the working process of small-scale gas turbine engines

Author(s):  
Venedikt S. Kuz'michev ◽  
Andrey Y. Tkachenko ◽  
Yaroslav A. Ostapyuk ◽  
Ilia N. Krupenich ◽  
Evgeniy P. Filinov
2018 ◽  
Vol 220 ◽  
pp. 03007
Author(s):  
Andrey Tkachenko ◽  
Evgeny Filinovaroslav Ostapyuk ◽  
Viktor Rybakov ◽  
Daria Kolmakova

The paper describes the method of selecting the working process parameters of a family of small-scale gas turbine engines (GTE) with common core. As an example, the thermodynamic design of a family of small-scale gas turbine engines (SGTE) with common core was carried out. The engine family includes a small-scale turbojet engine (STJE) and a gas turbine plant (GTP), which electric generator is driven by power turbine. The selection of rational values for the working process parameters of STJE and GTP was carried out in CAE system ASTRA on the basis of nonlinear optimization of these parameters, taking into account functional and parametric constraints. The quantitative results of deterioration in the performance of the engines of the family with common core are obtained in comparison with the engines with the optimum core for each type. However, the advanced creation of a common core can reduce the cost and timing of the engine creation, ensure its higher reliability (due to the development of the base common core) and reduce the cost of its production. The method of selecting the parameters of the working process of the GTE family with common core presents the solution to more complex problems, such as the possibility of developing a family consisting of five engines: a turbojet engine, turbofan engine, turbofan engine with a complex cycle, GTE with power turbine (GTE-PT), GTE-PT with recovery.


Author(s):  
C. P. Lea˜o ◽  
S. F. C. F. Teixeira ◽  
A. M. Silva ◽  
M. L. Nunes ◽  
L. A. S. B. Martins

In recent years, gas-turbine engines have undergone major improvements both in efficiency and cost reductions. Several inexpensive models are available in the range of 30 to 250 kWe, with electrical efficiencies already approaching 30%, due to the use of a basic air-compressor associated to an internal air pre-heater. Gas-turbine engines offer significant advantages over Diesel or IC engines, particularly when Natural Gas (NG) is used as fuel. With the current market trends toward Distributed Generation (DG) and the increased substitution of boilers by NG-fuelled cogeneration installations for CO2 emissions reduction, small-scale gas turbine units can be the ideal solution for energy systems located in urban areas. A numerical optimization method was applied to a small-scale unit delivering 100 kW of power and 0.86 kg/s of water, heated from 318 to 353K. In this academic study, the unit is based on a micro gas-turbine and includes an internal pre-heater, typical of these low pressure-ratio turbines, and an external heat recovery system. The problem was formulated as a non-linear optimisation model with the minimisation of costs subject to the physical and thermodynamic constraints. Despite difficulties in obtaining data for some of the components cost-equations, the preliminary results indicate that the optimal compressor pressure ratio is about half of the usual values found in large installations, but higher than those of the currently available micro-turbine models, while the turbine inlet temperature remains virtually unchanged.


2020 ◽  
Vol 19 (4) ◽  
pp. 43-57
Author(s):  
H. H. Omar ◽  
V. S. Kuz'michev ◽  
A. O. Zagrebelnyi ◽  
V. A. Grigoriev

Recent studies related to fuel economy in air transport conducted in our country and abroad show that the use of recuperative heat exchangers in aviation gas turbine engines can significantly, by up to 20...30%, reduce fuel consumption. Until recently, the use of cycles with heat recovery in aircraft gas turbine engines was restrained by a significant increase in the mass of the power plant due to the installation of a heat exchanger. Currently, there is a technological opportunity to create compact, light, high-efficiency heat exchangers for use on aircraft without compromising their performance. An important target in the design of engines with heat recovery is to select the parameters of the working process that provide maximum efficiency of the aircraft system. The article focused on setting of the optimization problem and the choice of rational parameters of the thermodynamic cycle parameters of a gas turbine engine with a recuperative heat exchanger. On the basis of the developed method of multi-criteria optimization the optimization of thermodynamic cycle parameters of a helicopter gas turbine engine with a ANSAT recuperative heat exchanger was carried out by means of numerical simulations according to such criteria as the total weight of the engine and fuel required for the flight, the specific fuel consumption of the aircraft for a ton- kilometer of the payload. The results of the optimization are presented in the article. The calculation of engine efficiency indicators was carried out on the basis of modeling the flight cycle of the helicopter, taking into account its aerodynamic characteristics. The developed mathematical model for calculating the mass of a compact heat exchanger, designed to solve optimization problems at the stage of conceptual design of the engine and simulation of the transport helicopter flight cycle is presented. The developed methods and models are implemented in the ASTRA program. It is shown that optimal parameters of the working process of a gas turbine engine with a free turbine and a recuperative heat exchanger depend significantly on the heat exchanger effectiveness. The possibility of increasing the efficiency of the engine due to heat regeneration is also shown.


2018 ◽  
Vol 220 ◽  
pp. 03004
Author(s):  
Evgeny Filinov ◽  
Daria Kolmakova ◽  
Sergey Avdeev ◽  
Sergey Krasilnikov

Several new correlation-regression models of weight calculation for small-scale aircraft gas turbine engines are proposed for their conceptual design stage. A comparison of the obtained weight models with each other and with the Kuz’michev model is carried out. Based on the obtained results, conclusions about the feasibility and scope of their application are drawn. New correlation-regression models differ from each other in the number of input parameters, as well as in the accuracy of forecasting the weight. In the course of the work, a database of main data and thermodynamic parameters of turbofan engines (TFE) is created consisting of 92 small-scale TFEs with thrust less than 50 kN. Based on the collected statistics, formulas were obtained that allow calculating the weight at the initial stage of engine design. The error in calculating the weight by these models is in range from 10% to 30%.


2021 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Vladimirs Gudakovskis

This chapter discusses the direction of development of promising multimode aviation gas turbine engines (GTE). It is shown that the development of GTE is on the way to increase the parameters engine workflow: gas temperatures in front of the turbine (T*G) and the degree of pressure increase in the compressor (P*C). It is predicted that the next generation engines will operate with high parameters of the working process, T*G = 2000–2200 K, π*C = 60–80. At this temperature of gases in front of the turbine, the working mixture in the combustion chamber (CC) is stoichiometric, which sharply narrows the range of stable operation of the CC and its efficiency drops sharply in off-design gas turbine engine operation modes. To expand the range of effective and stable work, it is proposed to use an advanced aviation GTE: Adaptive Type Combustion Chamber (ATCC). A scheme of the ATCC and the principles of its regulation in the system of a multi-mode gas turbine engine are presented. The concept of an adaptive approach is given in this article. There are two main directions for improving the characteristics of a promising aviation gas turbine engine. One is a complication of the concepts of aircraft engines and the other one is an increase in the parameters of the working process, the temperature of the gases in front of the turbine (T*G) and the degree of increasing pressure behind the compressor (π*C). It is shown how the principles of adaptation are used in these areas. The application of the adaptation principle in resolving the contradiction of the possibility of obtaining optimal characteristics of a high-temperature combustion chamber (CC) of a gas turbine engine under design (optimal) operating conditions and the impossibility of their implementation when these conditions change in the range of acceptable (non-design) gas turbine operation modes is considered in detail. The use of an adaptive approach in the development of promising gas turbine engines will significantly improve their characteristics and take into account unknown challenges.


2021 ◽  
Vol 2 (37(64)) ◽  
pp. 17-22
Author(s):  
V. Matveenko ◽  
A. Dologlonyan ◽  
A. Klimenko ◽  
V. Ocheretianyi

The results of research and development of cogeneration gas turbine engines (GTE) of complex cycles are presented. It is shown that the use of an overexpansion turbine (OT) in a gas turbine engine makes it possible to increase the efficiency of the engine on a par with the use of heat regeneration (R). The combination of these two methods in a GTE with OT and R provides a further increase in the engine's efficiency. It has been established that at partial loads, each design scheme has its own patterns of change in engine characteristics, which determine the field of application of cogeneration gas turbine engines. Examples of the possibilities of changing the working process in the engine are given, which allow to control the energy flows in the cogeneration power plant.


Sign in / Sign up

Export Citation Format

Share Document