Design and control of a brushless DC limited-angle torque motor with its application to fuel control of small-scale gas turbine engines

Mechatronics ◽  
2009 ◽  
Vol 19 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Ching-Chih Tsai ◽  
Shui-Chun Lin ◽  
Hsu-Chih Huang ◽  
Yu-Ming Cheng
Author(s):  
C. P. Lea˜o ◽  
S. F. C. F. Teixeira ◽  
A. M. Silva ◽  
M. L. Nunes ◽  
L. A. S. B. Martins

In recent years, gas-turbine engines have undergone major improvements both in efficiency and cost reductions. Several inexpensive models are available in the range of 30 to 250 kWe, with electrical efficiencies already approaching 30%, due to the use of a basic air-compressor associated to an internal air pre-heater. Gas-turbine engines offer significant advantages over Diesel or IC engines, particularly when Natural Gas (NG) is used as fuel. With the current market trends toward Distributed Generation (DG) and the increased substitution of boilers by NG-fuelled cogeneration installations for CO2 emissions reduction, small-scale gas turbine units can be the ideal solution for energy systems located in urban areas. A numerical optimization method was applied to a small-scale unit delivering 100 kW of power and 0.86 kg/s of water, heated from 318 to 353K. In this academic study, the unit is based on a micro gas-turbine and includes an internal pre-heater, typical of these low pressure-ratio turbines, and an external heat recovery system. The problem was formulated as a non-linear optimisation model with the minimisation of costs subject to the physical and thermodynamic constraints. Despite difficulties in obtaining data for some of the components cost-equations, the preliminary results indicate that the optimal compressor pressure ratio is about half of the usual values found in large installations, but higher than those of the currently available micro-turbine models, while the turbine inlet temperature remains virtually unchanged.


Author(s):  
I. N. Egorov ◽  
G. V. Kretinin ◽  
S. S. Kostiuk ◽  
I. A. Leshchenko ◽  
U. I. Babi

This paper presents the main theses of stochastic approach to the multimeasure parameters and control laws optimization for the aircraft gas-turbine engines. The methodology allows us to optimize the engines taking into account the technological deflections which inevitably take place in the process of manufacturing of the engine’s components as well as engine’s control deflections. The stochastic optimization is able to find highly robust solutions, stable to inaccuracies in technological processes. The effectiveness of the methodology is shown by example of optimization problem solution to find the control laws for the flow passage controllable elements of the 4-th generation aircraft mixed-flow turbofan engine. The use of information about the existing and advanced production technology levels during the optimization process, including some components manufacturing accuracy, allows us to considerably increase the probability of optimum solution implementation in practice. In real engine there are some components manufacturing deflections as well as control accuracy deflections. It results a certain engine’s performance deviation. An engine optimization classic deterministic approach can not take into account this circumstance, so the probability of an optimum design implementation is too low.


Author(s):  
C. Poole ◽  
A. G. Salsi ◽  
F. S. Bhinder ◽  
S. Kumar

This paper describes a computer program which has been developed to simulate industrial gas turbine engines to aid the design and application of fuel controllers. It explains the program structure and, as an example, gives the application of the program to the modelling of a simple two shaft industrial gas turbine engine. A brief discussion of the value of the implementation language, C++, is also given.


2018 ◽  
Vol 220 ◽  
pp. 03004
Author(s):  
Evgeny Filinov ◽  
Daria Kolmakova ◽  
Sergey Avdeev ◽  
Sergey Krasilnikov

Several new correlation-regression models of weight calculation for small-scale aircraft gas turbine engines are proposed for their conceptual design stage. A comparison of the obtained weight models with each other and with the Kuz’michev model is carried out. Based on the obtained results, conclusions about the feasibility and scope of their application are drawn. New correlation-regression models differ from each other in the number of input parameters, as well as in the accuracy of forecasting the weight. In the course of the work, a database of main data and thermodynamic parameters of turbofan engines (TFE) is created consisting of 92 small-scale TFEs with thrust less than 50 kN. Based on the collected statistics, formulas were obtained that allow calculating the weight at the initial stage of engine design. The error in calculating the weight by these models is in range from 10% to 30%.


2018 ◽  
Vol 220 ◽  
pp. 03007
Author(s):  
Andrey Tkachenko ◽  
Evgeny Filinovaroslav Ostapyuk ◽  
Viktor Rybakov ◽  
Daria Kolmakova

The paper describes the method of selecting the working process parameters of a family of small-scale gas turbine engines (GTE) with common core. As an example, the thermodynamic design of a family of small-scale gas turbine engines (SGTE) with common core was carried out. The engine family includes a small-scale turbojet engine (STJE) and a gas turbine plant (GTP), which electric generator is driven by power turbine. The selection of rational values for the working process parameters of STJE and GTP was carried out in CAE system ASTRA on the basis of nonlinear optimization of these parameters, taking into account functional and parametric constraints. The quantitative results of deterioration in the performance of the engines of the family with common core are obtained in comparison with the engines with the optimum core for each type. However, the advanced creation of a common core can reduce the cost and timing of the engine creation, ensure its higher reliability (due to the development of the base common core) and reduce the cost of its production. The method of selecting the parameters of the working process of the GTE family with common core presents the solution to more complex problems, such as the possibility of developing a family consisting of five engines: a turbojet engine, turbofan engine, turbofan engine with a complex cycle, GTE with power turbine (GTE-PT), GTE-PT with recovery.


2018 ◽  
pp. 113-117
Author(s):  
Сергій Сергійович Товкач

The article is devoted to the development of modern models and algorithms for information processing for the prediction, diagnosing and maintenance tasks of inter-element interaction in automatic control systems of aviation gas turbine engines. Considered the model of inter-node interaction with the definition of power active points and their neural structures with visualization in the form of scalogramm. Presented a graph of changes the power node characteristics of the automatic control systems of gas turbine engine and the distribution histograms of practically normal states and faults with defect properties on the scale of confidence coefficients based on the control algorithm the prediction and diagnostics processes according to the data of the system survey.The decision support system during the research process has two stages of functioning:1) at the stage of prediction and diagnostics, the measurement of the power characteristics of the active interaction points is determined, and corresponding elements of the models are taken into account the power states formed on the nominal energy state of the nodes;2) at the stage of maintenance and repair, while observing the painted nodes, determine the type, intensity and duration of influence in order to normalize the power of the nodal active points of interaction (to bring the state to a dark brown colour). At the same time, the dynamics of the correction process is well traced, visually visible to which accompanying situations is directed the impact and how it will affect the functioning of the linked nodes and /or systems.During the developing an appropriate system of inter-element interaction in automatic control systems of gas turbine engines, it is possible to receive an educational and control sample to support decision-making, check the reliability of the operation of the received rules, and if necessary, a training procedure can be implemented to improve the accuracy of the classification by training and control samples.The developed rational technology of building the architecture of nodes in the automatic control systems of aviation engines will create high-performance systems of a new generation with a flexible, easily variable structure, increase reliability and durability of operation of automatic control systems of aviation engines.


Author(s):  
James J. Nicolo ◽  
David M. Zipkin ◽  
John Scharschan

This paper details the on-going effort of NAVSEA Philadelphia to provide a command and control technology upgrade to the Model 139 Gas Turbine Generator Set, while deploying a novel approach to this process using Open System Architecture Condition Based Maintenance (OSA-CBM) archetype. The long-term goal of the process being implemented is to serve as the foundation for a communication and interfacing standardization for the marine gas turbine (GT) community. The topics to be discussed in this essay span from investigation to a proposed design, which includes physical measurement of parameters, sensor-Full Authority Digital Controller (FADC) interfacing, and overall system architecture.


Sign in / Sign up

Export Citation Format

Share Document