Study of photopolymerizable sol-gel glasses incorporating ionic liquid: Impact on material properties and holographic gratings performance

Author(s):  
A. V. Velasco ◽  
M. P. Hernandez-Garay ◽  
M. L. Calvo ◽  
P. Cheben ◽  
F. del Monte
Author(s):  
George C. Ruben ◽  
Merrill W. Shafer

Traditionally ceramics have been shaped from powders and densified at temperatures close to their liquid point. New processing methods using various types of sols, gels, and organometallic precursors at low temperature which enable densificatlon at elevated temperatures well below their liquidus, hold the promise of producing ceramics and glasses of controlled and reproducible properties that are highly reliable for electronic, structural, space or medical applications. Ultrastructure processing of silicon alkoxides in acid medium and mixtures of Ludox HS-40 (120Å spheres from DuPont) and Kasil (38% K2O &62% SiO2) in basic medium have been aimed at producing materials with a range of well defined pore sizes (∼20-400Å) to study physical phenomena and materials behavior in well characterized confined geometries. We have studied Pt/C surface replicas of some of these porous sol-gels prepared at temperatures below their glass transition point.


2004 ◽  
Vol 398 (1-3) ◽  
pp. 151-156 ◽  
Author(s):  
M. Feuillade ◽  
C. Croutxé-Barghorn ◽  
L. Mager ◽  
C. Carré ◽  
A. Fort

1998 ◽  
Vol 519 ◽  
Author(s):  
L. Bergogne ◽  
S. Fennouh ◽  
J. Livage ◽  
C. Roux

AbstractBioencapsulation in sol-gel materials has been widely studied during the past decade. Trapped species appear to retain their bioactivity in the porous silica matrix. Small analytes can diffuse through the pores allowing bioreactions to be performed in-situ, inside the sol-gel glass. A wide range of biomolecules and micro-organisms have been encapsulated. The catalytic activity of enzymes is used for the realization of biosensors or bioreactors. Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cells are now encapsulated without any alteration of their cellular organization. They can be used for the production of chemicals or as antigens for immunoassays.


2004 ◽  
Vol 30 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Massimo Bottini ◽  
Almerinda Di Venere ◽  
Lutz Tautz ◽  
Alessandro Desideri ◽  
Paolo Lugli ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (17) ◽  
pp. 10081-10091 ◽  
Author(s):  
T. Preethi ◽  
M. P. Padmapriya ◽  
B. Abarna ◽  
G. R. Rajarajeswari

Choline chloride–zinc chloride ionic liquid has been used as a green template to synthesis highly crystalline mesoporou anatase titania.


Author(s):  
Petr Dzik ◽  
Magdalena Morozová ◽  
Petr Klusoň ◽  
Michal Veselý

AbstractAn optimized reverse micelles sol-gel composition was deposited by inkjet direct patterning onto glass supports. Experimental “material printer” Fujifilm Dimatix 2831 was used for sol patterning. Printing was repeated up to 4 times in wet-to-dry manner and photocatalytic coatings of various thickness were obtained after final thermal calcination. Basic material properties of prepared coating were studied by optical microscopy, electron and atomic force imaging, Raman, XRD and UV-VIS spectrometry. Photocatalytic activity was evaluated by dye and fatty acid degradation rate as well as photoinduced hydrophilic conversion rate. Reverse micelles proved to be viable synthetic route for the preparation of titania coatings with even structure and their compatibility with inkjet direct patterning deposition was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document