Coherence and Identity Learning for Arbitrary-length Face Video Generation

Author(s):  
Shuquan Ye ◽  
Chu Han ◽  
Jiaying Lin ◽  
Guoqiang Han ◽  
Shengfeng He
2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


2006 ◽  
Vol 20 (5) ◽  
pp. 317-326 ◽  
Author(s):  
Sven De Weerdt ◽  
René Bouwen ◽  
Felix Corthouts ◽  
Hilda Martens

Societal and organizational change requires people to change their professional identity continuously. Starting from two theoretical traditions that address identity and learning, the authors analysed the learning narratives of two sets of learners – participants in a two-year experiential learning programme and student interns, both in the domain of organizational behaviour. They then developed a model of transformational learning for two aspects of a learner's professional identity: (1) the change in concepts and images that relate to who we consider ourselves to be; and (2) the development of a healthy self-worth and self-confidence. This differentiation of transformational learning into two distinct and complementary processes constitutes the contribution of this research to the theoretical understanding of identity transformation. By means of the notion of ‘intercontextuality’, the authors also describe the process that integrates the individual sense-making perspective and the relational–participatory perspective on identity learning.


1966 ◽  
Vol 33 (2) ◽  
pp. 356-362 ◽  
Author(s):  
W. G. Knauss

Stresses in an infinitely long strip of finite width containing a straight semi-infinite crack have been calculated for the case that the clamped boundaries are displaced normal to the crack. The solution is obtained by the Wiener-Hopf technique. The stresses are given in the form of asymptotic expansions in the immediate crack tip vicinity and for a larger region of interest in graphical form. The effect of prescribing displacements on the boundary close to a crack instead of stresses far away is discussed briefly. Together with an asymptotic solution for a small crack, the result is used to estimate the stress field around a crack of arbitrary length in an infinite strip. The usefulness of this crack geometry in laboratory investigations of fracture mechanics is pointed out.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
R. Ansari ◽  
B. Motevalli

Nested carbon nanotubes exhibit telescopic oscillatory motion with frequencies in the gigahertz range. In this paper, our previously proposed semi-analytical expression for the interaction force between two concentric carbon nanotubes is used to solve the equation of motion. That expression also enables a new semi-analytical expression for the precise evaluation of oscillation frequency to be introduced. Alternatively, an algebraic frequency formula derived based on the simplifying assumption of constant van der Waals force is also given. Based on the given formulas, a thorough study on different aspects of operating frequencies under various system parameters is conducted, which permits fresh insight into the problem. Some notable improvements over the previously drawn conclusions are made. The strong dependence of oscillatory frequency on system parameters including the extrusion distance and initial velocity of the core as initial conditions for the motion is shown. Interestingly, our results indicate that there is a special initial velocity at which oscillatory frequency is unique for any arbitrary length of the core. A particular relationship between the escape velocity (the minimum initial velocity beyond which the core will leave the outer nanotube) and this specific initial velocity is also revealed.


1994 ◽  
Vol 08 (22) ◽  
pp. 3083-3094 ◽  
Author(s):  
V. DALLACASA

We have investigated the occurrence of superconductivity in a Fermi liquid of finite volume, under the assumption of a sharp surface, by solving numerically (at arbitrary length) and analytically (at the smallest lengths) the Cooper–BCS model. We find that this model can predict enhanced superconductivity with respect to the bulk BCS model when the system length L ≪ L0, in which L0 is a characteristic length. Under the same conditions the normal state is found to behave anomalously with respect to the conventional Fermi liquid, with a linear temperature dependence of the resistivity and marginal Fermi liquid properties. The results are used to implement a domain model of high T c superconductors.


Sign in / Sign up

Export Citation Format

Share Document