On New Aspects of Nested Carbon Nanotubes as Gigahertz Oscillators

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
R. Ansari ◽  
B. Motevalli

Nested carbon nanotubes exhibit telescopic oscillatory motion with frequencies in the gigahertz range. In this paper, our previously proposed semi-analytical expression for the interaction force between two concentric carbon nanotubes is used to solve the equation of motion. That expression also enables a new semi-analytical expression for the precise evaluation of oscillation frequency to be introduced. Alternatively, an algebraic frequency formula derived based on the simplifying assumption of constant van der Waals force is also given. Based on the given formulas, a thorough study on different aspects of operating frequencies under various system parameters is conducted, which permits fresh insight into the problem. Some notable improvements over the previously drawn conclusions are made. The strong dependence of oscillatory frequency on system parameters including the extrusion distance and initial velocity of the core as initial conditions for the motion is shown. Interestingly, our results indicate that there is a special initial velocity at which oscillatory frequency is unique for any arbitrary length of the core. A particular relationship between the escape velocity (the minimum initial velocity beyond which the core will leave the outer nanotube) and this specific initial velocity is also revealed.

1996 ◽  
Vol 10 (25) ◽  
pp. 3451-3459 ◽  
Author(s):  
ANTÓNIO M.R. CADILHE ◽  
VLADIMIR PRIVMAN

We introduce a model with conserved dynamics, where nearest neighbor pairs of spins ↑↓ (↓↑) can exchange to assume the configuration ↓↑ (↑↓), with rate β(α), through energy decreasing moves only. We report exact solution for the case when one of the rates, α or β, is zero. The irreversibility of such zero-temperature dynamics results in strong dependence on the initial conditions. Domain wall arguments suggest that for more general, finite-temperature models with steady states the dynamical critical exponent for the anisotropic spin exchange is different from the isotropic value.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


2017 ◽  
Author(s):  
Artur Rego-Costa ◽  
Florence Débarre ◽  
Luis-Miguel Chevin

Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability.


2021 ◽  
Vol 10 (2) ◽  
pp. 11
Author(s):  
Yasir Ahmed Hamza ◽  
Marwan Dahar Omer

In this study, a new approach of image encryption has been proposed. This method is depends on the symmetric encryption algorithm RC4 and Rossler chaotic system. Firstly, the encryption key is employed to ciphering a plain image using RC4 and obtains a ciphered-image. Then, the same key is used to generate the initial conditions of the Rossler system. The system parameters and the initial conditions are used as the inputs for Rossler chaotic system to generate the 2-dimensional array of random values. The resulted array is XORed with the ciphered-image to obtain the final encrypted-image. Based on the experimental results, the proposed method has achieved high security and less computation time. Also, the proposed method can be resisted attacks like (statistical, brute-force, and differential).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmad Saka Falwa Guna ◽  
Fitria Ramadhani

This research was based on the limitations of the human mind itself in providing and obtaining reasonable explanations, because at that time the desire to know something was obstructed from various myths which existedin that society so that myths were embedded in human mind. The focus of this research was on the methodology of the Imre Lakatos research program. The purpose of this study was to determine the process of research program methodology from Imre Lakatos. The method used in this research was library research, where the researchers looked for and read sources that match the title to be studied, such as books, articles, writings and journals that were relevant.The results of this study in the Imre Lakatos research program methodology included: First, the core (hardcore) functions as a negative heuristic. Second, the protective-belt which consisted of auxiliary hypotheses in the initial conditions. Third, a series of theories (a series theory), theory linkages where the next theory was the result of the auxiliary clauses added from the previous theory.


2010 ◽  
Vol 17 (2) ◽  
pp. 299-306
Author(s):  
Adam Żuchowski

On a Certain Class of Expanding Systems The interesting properties of a class of expanding systems are discussed. The operation of the considered systems can be described as follows: the input signal is processed by a linear dynamic converter in subsequent time intervals, each of them is equal to Ti. Processing starts at the moments n · Ti, always after zeroing of converter initial conditions. For smooth input signals and a given transfer function of the converter one can suitably choose Ti and the gain coefficient in order to realize the postulated linear operations on input signals, which is quite different comparing it to the operation realized by the converter. The errors of postulated operations are mainly caused by non-smooth components of the input signal. The principles for choice of system parameters and rules for system optimization are presented in the paper. The referring examples are attached too.


1967 ◽  
Vol 89 (4) ◽  
pp. 824-830 ◽  
Author(s):  
S. R. Bland ◽  
R. H. Rhyne ◽  
H. B. Pierce

Vibration phenomena associated with narrow channel flow have come under study as a result of the core failure of an early nuclear rocket engine. Since the mechanism of this vibration instability was not well understood at the time of failure, an investigation of a simple system consisting of a rigid plate with two degrees of spring-restrained freedom in a two-dimensional channel has been made both experimentally and analytically. The results show a strong dependence of the flow rate required for plate oscillation on the channel width (normal to plate).


2018 ◽  
Vol 15 (142) ◽  
pp. 20170976 ◽  
Author(s):  
Laurent Duchemin ◽  
Christophe Eloy ◽  
Eric Badel ◽  
Bruno Moulia

Plants have developed different tropisms: in particular, they reorient the growth of their branches towards the light (phototropism) or upwards (gravitropism). How these tropisms affect the shape of a tree crown remains unanswered. We address this question by developing a propagating front model of tree growth. Being length-free, this model leads to self-similar solutions after a long period of time, which are independent of the initial conditions. Varying the intensities of each tropism, different self-similar shapes emerge, including singular ones. Interestingly, these shapes bear similarities to existing tree species. It is concluded that the core of specific crown shapes in trees relies on the balance between tropisms.


2021 ◽  
Vol 932 ◽  
Author(s):  
Guangzhao Zhou ◽  
Andrea Prosperetti

It is known that the dripping of a liquid film on the underside of a plate can be suppressed by tilting the plate so as to cause a sufficiently strong flow. This paper uses two-dimensional numerical simulations in a closed-flow framework to study several aspects of this phenomenon. It is shown that, in quasi-equilibrium conditions, the onset of dripping is closely associated with the curvature of the wave crests approaching a well-defined maximum value. When dynamic effects become significant, this connection between curvature and dripping weakens, although the critical curvature remains a useful reference point as it is intimately related to the short length scales promoted by the Rayleigh–Taylor instability. In the absence of flow, when the film is on the underside of a horizontal plate, the concept of a limit curvature is relevant only for small liquid volumes close to a critical value. Otherwise, the drops that form have a smaller curvature and a large volume. The paper also illustrates the peculiarly strong dependence of the dripping transition on the initial conditions of the simulations. This feature prevents the development of phase maps dependent only on the governing parameters (Reynolds number, Bond number, etc.) similar to those available for film flow on the upper side of an inclined plate.


Author(s):  
W. D. Zhu ◽  
C. D. Mote

Abstract The transverse response of a cable transport system, which is modelled as an ideal, constant tension string travelling at constant speed between two supports with a damped linear oscillator attached to it, is predicted for arbitrary initial conditions, external forces and boundary excitations. The exact formulation of the coupled system reduces to a single integral equation of Volterra type governing the interaction force between the string and the payload oscillator. The time history of the interaction force is discontinuous for non-vanishing damping of the oscillator. These discontinuities occur at the instants when transverse waves propagating along the string interact with the oscillator. The discontinuities are treated using the theory of distributions. Numerical algorithms for computing the integrals involving generalized functions and for solution of the delay-integral-differential equation are developed. Response analysis shows a discontinuous velocity history of the payload attachment point. Special conditions leading to absence of the discontinuities above are given.


Sign in / Sign up

Export Citation Format

Share Document