An Active Transfer Learning (ATL) Framework for Smart Manufacturing with Limited Data: Case Study on Material Transfer in Composites Processing

Author(s):  
Milad Ramezankhani ◽  
Apurva Narayan ◽  
Rudolf Seethaler ◽  
Abbas S. Milani
2021 ◽  
Vol 59 ◽  
pp. 345-354
Author(s):  
Milad Ramezankhani ◽  
Bryn Crawford ◽  
Apurva Narayan ◽  
Heinz Voggenreiter ◽  
Rudolf Seethaler ◽  
...  

2021 ◽  
Vol 103 ◽  
pp. 107150
Author(s):  
Te Han ◽  
Chao Liu ◽  
Rui Wu ◽  
Dongxiang Jiang

2021 ◽  
pp. 1-16
Author(s):  
Hajer Al-Faham

How does surveillance shape political science research in the United States? In comparative and international politics, there is a rich literature concerning the conduct of research amid conditions of conflict and state repression. As this literature locates “the field” in distant contexts “over there,” the United States continues to be saturated with various forms of state control. What this portends for American politics research has thus far been examined by a limited selection of scholars. Expanding on their insights, I situate “the field” in the United States and examine surveillance of American Muslims, an understudied case of racialized state control. Drawing on qualitative data from a case study of sixty-nine interviews with Arab and Black American Muslims, I argue that surveillance operated as a two-stage political mechanism that mapped onto research methodologically and substantively. In the first stage, surveillance reconfigured the researcher-researchee dynamic, hindered recruitment and access, and limited data-collection. In the second stage, surveillance colored the self-perceptions, political attitudes, and civic engagement of respondents, thereby indicating a political socialization unfolding among Muslims. The implications of this study suggest that researchers can mitigate against some, but not all, of the challenges presented by surveillance and concomitant forms of state control.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


AAPG Bulletin ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1257-1274 ◽  
Author(s):  
Saibal Bhattacharya ◽  
John H. Doveton ◽  
Timothy R. Carr ◽  
Willard R. Guy ◽  
Paul M. Gerlach

2015 ◽  
Vol 9 (4) ◽  
pp. 595-607 ◽  
Author(s):  
Jie Xin ◽  
Zhiming Cui ◽  
Pengpeng Zhao ◽  
Tianxu He

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2760
Author(s):  
Seungmin Oh ◽  
Akm Ashiquzzaman ◽  
Dongsu Lee ◽  
Yeonggwang Kim ◽  
Jinsul Kim

In recent years, various studies have begun to use deep learning models to conduct research in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute development of such models since training deep learning models require a lot of labeled data. In fields such as HAR, it is difficult to collect data and there are high costs and efforts involved in manual labeling. The existing methods rely heavily on manual data collection and proper labeling of the data, which is done by human administrators. This often results in the data gathering process often being slow and prone to human-biased labeling. To address these problems, we proposed a new solution for the existing data gathering methods by reducing the labeling tasks conducted on new data based by using the data learned through the semi-supervised active transfer learning method. This method achieved 95.9% performance while also reducing labeling compared to the random sampling or active transfer learning methods.


2019 ◽  
Vol 105 ◽  
pp. 123-132 ◽  
Author(s):  
Gelayol Golkarnarenji ◽  
Minoo Naebe ◽  
Khashayar Badii ◽  
Abbas S. Milani ◽  
Reza N. Jazar ◽  
...  

Author(s):  
Shaw C. Feng ◽  
William Z. Bernstein ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.


Sign in / Sign up

Export Citation Format

Share Document