Enhancing the Food Image Classification Accuracy Using Ensemble of CNNs and HelperNet

Author(s):  
Anuj Deshmukh ◽  
Gaurav Punjabi ◽  
Sandeep Joshi
Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


Author(s):  
Tareq Khan

When food is warmed in a microwave oven, the user guesses the estimated time for the heating. This cognitive process of guessing can be incorrect - resulting the final food temperature to be too hot or still cold. In this research, a novel closed-loop microwave oven is designed which automatically suggests the target temperature of a food by learning from previous experiences and the heating stops automatically when the food temperature reaches the target temperature. The proposed microwave captures and classifies the food image, and recommends the target temperature, thus the user does not need to remember the target food temperature each time the same food is warmed. The algorithm gradually learns the type of foods that are used in that household and becomes smarter in the recommendation. The proposed algorithm can recommend target temperature with an accuracy of 86.31% for solid food and 100% for liquid food. A prototype of the proposed microwave is developed using the embedded system and tested.


Author(s):  
Wenqi Zhao ◽  
Satoshi Oyama ◽  
Masahito Kurihara

Counterfactual explanations help users to understand the behaviors of machine learning models by changing the inputs for the existing outputs. For an image classification task, an example counterfactual visual explanation explains: "for an example that belongs to class A, what changes do we need to make to the input so that the output is more inclined to class B." Our research considers changing the attribute description text of class A on the basis of the attributes of class B and generating counterfactual images on the basis of the modified text. We can use the prediction results of the model on counterfactual images to find the attributes that have the greatest effect when the model is predicting classes A and B. We applied our method to a fine-grained image classification dataset and used the generative adversarial network to generate natural counterfactual visual explanations. To evaluate these explanations, we used them to assist crowdsourcing workers in an image classification task. We found that, within a specific range, they improved classification accuracy.


Author(s):  
Ramakrishnan Mukundan ◽  
Anna Hemsley

Tissue image classification is a challenging problem due to the fact that the images contain highly irregular shapes in complex spatial arrangement. The multi-fractal formalism has been found useful in characterizing the intensity distribution present in such images, as it can effectively resolve local densities and also represent various structures present in the image. This paper presents a detailed study of feature vectors derived from the distribution of Holder exponents and the geometrical characteristics of the multi-fractal spectra that can be used in applications requiring image classification and retrieval. The paper also gives the results of experimental analysis performed using a tissue image database and demonstrates the effectiveness of the proposed multi-fractal-based descriptors in tissue image classification and retrieval. Implementation aspects that need to be considered for improving classification accuracy and the feature representation capability of the proposed descriptors are also outlined.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950079
Author(s):  
JUNYING SU ◽  
YINGKUI LI ◽  
QINGWU HU

To maximize the advantages of both spectral and spatial information, we introduce a new spectral–spatial jointed hyperspectral image classification approach based on fractal dimension (FD) analysis of spectral response curve (SRC) in spectral domain and extended morphological processing in spatial domain. This approach first calculates the FD image based on the whole SRC of the hyperspectral image and decomposes the SRC into segments to derive the FD images with each SRC segment. These FD images based on the segmented SRC are composited into a multidimensional FD image set in spectral domain. Then, the extended morphological profiles (EMPs) are derived from the image set through morphological open and close operations in spatial domain. Finally, all these EMPs and FD features are combined into one feature vector for a probabilistic support vector machine (SVM) classification. This approach was demonstrated using three hyperspectral images in urban areas of the university campus and downtown area of Pavia, Italy, and the Washington DC Mall area in the USA, respectively. We assessed the potential and performance of this approach by comparing with PCA-based method in hyperspectral image classification. Our results indicate that the classification accuracy of our proposed method is much higher than the accuracies of the classification methods based on the spectral or spatial domain alone, and similar to or slightly higher than the classification accuracy of PCA-based spectral–spatial jointed classification method. The proposed FD approach also provides a new self-similarity measure of land class in spectral domain, a unique property to represent hyperspectral self-similarity of SRC in hyperspectral imagery.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wei Wang ◽  
Yiyang Hu ◽  
Ting Zou ◽  
Hongmei Liu ◽  
Jin Wang ◽  
...  

Because deep neural networks (DNNs) are both memory-intensive and computation-intensive, they are difficult to apply to embedded systems with limited hardware resources. Therefore, DNN models need to be compressed and accelerated. By applying depthwise separable convolutions, MobileNet can decrease the number of parameters and computational complexity with less loss of classification precision. Based on MobileNet, 3 improved MobileNet models with local receptive field expansion in shallow layers, also called Dilated-MobileNet (Dilated Convolution MobileNet) models, are proposed, in which dilated convolutions are introduced into a specific convolutional layer of the MobileNet model. Without increasing the number of parameters, dilated convolutions are used to increase the receptive field of the convolution filters to obtain better classification accuracy. The experiments were performed on the Caltech-101, Caltech-256, and Tubingen animals with attribute datasets, respectively. The results show that Dilated-MobileNets can obtain up to 2% higher classification accuracy than MobileNet.


2020 ◽  
Vol 12 (18) ◽  
pp. 2956 ◽  
Author(s):  
Peng Dou ◽  
Chao Zeng

Recently, deep learning has been reported to be an effective method for improving hyperspectral image classification and convolutional neural networks (CNNs) are, in particular, gaining more and more attention in this field. CNNs provide automatic approaches that can learn more abstract features of hyperspectral images from spectral, spatial, or spectral-spatial domains. However, CNN applications are focused on learning features directly from image data—while the intrinsic relations between original features, which may provide more information for classification, are not fully considered. In order to make full use of the relations between hyperspectral features and to explore more objective features for improving classification accuracy, we proposed feature relations map learning (FRML) in this paper. FRML can automatically enhance the separability of different objects in an image, using a segmented feature relations map (SFRM) that reflects the relations between spectral features through a normalized difference index (NDI), and it can then learn new features from SFRM using a CNN-based feature extractor. Finally, based on these features, a classifier was designed for the classification. With FRML, our experimental results from four popular hyperspectral datasets indicate that the proposed method can achieve more representative and objective features to improve classification accuracy, outperforming classifications using the comparative methods.


Sign in / Sign up

Export Citation Format

Share Document