Reverse Engineering of Three-Dimensional Geometric Model of Cattle Hoof Considering Multivariate Function Decomposition

Author(s):  
Zhao Li ◽  
Wang Hetian
2012 ◽  
Vol 239-240 ◽  
pp. 645-648 ◽  
Author(s):  
Dong Yang Fang ◽  
Ai Mei Zhang ◽  
Yi Qiu

New mode of measurement and draft in mechanical drawing based on reverse engineering is presented to reflect the idea of modern engineering design on teaching practice. Traditional measurement tools are replaced by three-dimensional scanner, whereas graphics processing is performed by using CAD technology. The processing includes three steps. Firstly, point cloud of part surface shape is obtained through scanning. Secondly, point cloud images are joined, filtered and latticed in Geomagic, which is application software of CAD. Finally, the processed point cloud is imported into Catia to reconstruct surface and three-dimensional geometric model. An innovative method of measurement and draft is accordingly proposed, which combines teaching and practices and helps to cultivate the innovative idea and abilities of students.


2021 ◽  
pp. 004051752199276
Author(s):  
Ki Wai Fong ◽  
Si Qing Li ◽  
Rong Liu

Inlay yarn and laid-in structures are important technical knitting elements that have been increasingly applied in the structural design of functional textiles in industrial, medical, and wearable electronics fields. However, there is no currently established geometric model to numerically analyze their spatial morphologies and structural properties. This study presents a new geometric model and numerical analysis approach to characterize spatial configurations of inlay yarn and ground yarn in a three-dimensional scenario for laid-in weft-knitted fabrics. Loop lengths of the inlay and ground yarn materials were calculated and analyzed under different contact and deformation conditions to estimate material consumption in this complex interlooping layout. Series of laid-in weft-knitted fabrics made of different combinations of ground and inlay yarns were fabricated with the 1 × 1 laid-in loop pattern and tested for the model validation. The comparisons between the experimental and calculated results indicated that the newly developed geometric model favorably agreed with the experimental measurements regarding the ground loop lengths and inlay loop lengths applied in the laid-in weft-knitted structures. The results indicated the applicability of the developed geometric model of laid-in weft-knitted fabrics with similar structural patterns in practical use. The output of this study provides a theoretical and practical reference for structural and physical properties analysis, material consumption prediction, even cost estimation of laid-in weft-knitted fabrics.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1042
Author(s):  
Rafał Krupiński

The paper presents the opportunities to apply computer graphics in an object floodlighting design process and in an analysis of object illumination. The course of object floodlighting design has been defined based on a virtual three-dimensional geometric model. The problems related to carrying out the analysis of lighting, calculating the average illuminance, luminance levels and determining the illuminated object surface area are also described. These parameters are directly tied with the calculations of the Floodlighting Utilisation Factor, and therefore, with the energy efficiency of the design as well as the aspects of light pollution of the natural environment. The paper shows how high an impact of the geometric model of the object has on the accuracy of photometric calculations. Very often the model contains the components that should not be taken into account in the photometric calculations. The research on what influence the purity of the geometric mesh of the illuminated object has on the obtained results is presented. It shows that the errors can be significant, but it is possible to optimise the 3D object model appropriately in order to receive the precise results. For the example object presented in this paper, removing the planes that do not constitute its external surface has caused a two-fold increase in the average illuminance and average luminance. This is dangerous because a designer who wants to achieve a specific average luminance level in their design without optimizing the model will obtain the luminance values that will actually be much higher.


2010 ◽  
Vol 29-32 ◽  
pp. 835-840 ◽  
Author(s):  
Zhi Peng Feng ◽  
Ji Ye Zhang ◽  
Wei Hua Zhang

As the speed of train increases, flow-induced vibration of trains passing through tunnels has become a subject of discussion, to investigate this phenomenon, a simplified geometric model and a vehicle dynamics model of a high-speed train traveling through a tunnel were built. To analyze the unsteady three-dimensional flow around the train, the 3-D, transient, viscous, compressible Reynolds-averaged Navier-Stokes equations combined with the k- two-equation turbulence model were solved with the finite volume method. The motion of the train was carried out using the technique of sliding grid method. The dynamics response of the train was obtained by means of the computational multi-body dynamics calculation. Meanwhile the running safety and riding comfort of the train were analyzed. With the numerical simulation, the variation of aerodynamic forces was obtained. The research founds that, vibration of the train increases drastically during it passing through a tunnel. The running safety and riding quality of the train are reduced greatly but they are in the safe range.


2020 ◽  
Vol 4 (3) ◽  
pp. 63 ◽  
Author(s):  
Ian Brown ◽  
Julius Schoop

In this work, a geometric model for surface generation of finish machining was developed in MATLAB, and subsequently verified by experimental surface roughness data gathered from turning tests in Ti-6Al4V. The present model predicts the behavior of surface roughness at multiple length scales, depending on feed, nose radius, tool edge radius, machine tool error, and material-dependent parameters—in particular, the minimum effective rake angle. Experimental tests were conducted on a commercial lathe with slightly modified conventional tooling to provide relevant results. Additionally, the model-predicted roughness was compared against pedigreed surface roughness data from previous efforts that included materials 51CrV4 and AL 1075. Previously obscure machine tool error effects have been identified and can be modeled within the proposed framework. Preliminary findings of the model’s relevance to subsurface properties have also been presented. The proposed model has been shown to accurately predict roughness values for both long and short surface roughness evaluation lengths, which implies its utility not only as a surface roughness prediction tool, but as a basis for understanding three-dimensional surface generation in ductile-machining materials, and the properties derived therefrom.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2106 ◽  
Author(s):  
Jiuchao Zhao ◽  
Anxi Yu ◽  
Yongsheng Zhang ◽  
Xiaoxiang Zhu ◽  
Zhen Dong

Spaceborne multistatic synthetic aperture radar (SAR) tomography (SMS-TomoSAR) systems take full advantage of the flexible configuration of multistatic SAR in the space, time, phase, and frequency dimensions, and simultaneously achieve high-precision height resolution and low-deformation measurement of three-dimensional ground scenes. SMS-TomoSAR currently poses a series of key issues to solve, such as baseline optimization, spatial transmission error estimation and compensation, and the choice of imaging algorithm, which directly affects the performance of height-dimensional imaging and surface deformation measurement. This paper explores the impact of baseline distribution on height-dimensional imaging performance for the baseline optimization issue, and proposes a feasible baseline optimization method. Firstly, the multi-base multi-pass baselines of an SMS-TomoSAR system are considered equivalent to a group of multi-pass baselines from monostatic SAR. Secondly, we establish the equivalent baselines as a symmetric-geometric model to characterize the non-uniform characteristic of baseline distribution. Through experimental simulation and model analysis, an approximately uniform baseline distribution is shown to have better SMS-TomoSAR imaging performance in the height direction. Further, a baseline design method under uniform-perturbation sampling with Gaussian distribution error is proposed. Finally, the imaging performance of different levels of perturbation is compared, and the maximum baseline perturbation allowed by the system is given.


2013 ◽  
Vol 22 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Guilherme Carvalho Silva ◽  
Tulimar Machado Pereira Cornacchia ◽  
Estevam Barbosa de Las Casas ◽  
Cláudia Silami de Magalhães ◽  
Allyson Nogueira Moreira

2014 ◽  
Vol 31 (7) ◽  
pp. 1221-1241 ◽  
Author(s):  
Rubén Sarabia-Pérez ◽  
Antonio Jimeno-Morenilla ◽  
Rafael Molina-Carmona

Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.


Sign in / Sign up

Export Citation Format

Share Document