Red shift of optical band gap in ZnO doped with K synthesized by solution combustion technique

Author(s):  
R. Krithiga ◽  
S. Sankar ◽  
G. Subhashree
2018 ◽  
Vol 766 ◽  
pp. 191-196
Author(s):  
Oratai Jongprateep ◽  
Kornkamon Meesombad ◽  
Ratchatee Techapiesancharoenkij ◽  
Krissada Surawathanawises ◽  
Ratiporn Munprom

Utilization of photocatalytic properties of materials can be perceived through a wide range of applications, such as anti-bacterial, water treatment, and self-cleaning materials. It has been established that doping can result in alteration of photocatalytic activities. This study aimed at studying effects of tin concentration on chemical composition, microstructure, band gap energy, and photocatalytic activities of tin-doped titanium dioxide powder synthesized by solution combustion technique. Experimental results revealed that concentration of tin significantly influenced chemical composition of the powders. A semi-quantitative analysis indicated that tin oxide secondary phase increased from 11 to 23 wt%, as the Sn increased from 2.5 to 10 mol%, respectively. Tin concentration, nevertheless, did not significantly influence microstructure of the powders. All powders had average particle size ranging from 13.1 to 13.4 nm, which agglomerated into clusters with average sizes ranging from 103 to 140 nm. A slight increase of band gap energy was observed at higher tin concentration. The most prominent photocatalytic activities, determined from decomposition of methylene blue, was found in the titanium dioxide powder with 2.5 mol% Sn.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Guomei Tang ◽  
Hua Liu ◽  
Wei Zhang

ZnO:In films with different concentrations (0–5 at.%) are successfully synthesized on quartz substrates using sol-gel technique. The structure, morphology, and optical properties of ZnO:In films are investigated by X-ray diffraction, atomic force microscopy, and UV-visible spectrophotometer. It is found that all the films with columnar structural morphology grow along the preferred [001] orientation and the incorporation of indium can improve the crystallinity of ZnO films. The transmittance of the films is about 80% in the visible range. A change of the optical absorption edge from blue shift to red shift is observed for ZnO:In films as the doping concentration increases, which means that the optical band gap first increases and then decreases. The blue shift is due to the Burstein-Moss effect. The sharp jump of the absorption edge from blue-shift to red shift is ascribe to the band gap narrowing caused by the merging of the donor and conduction bands of ZnO:In at high doping concentration.


2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1118
Author(s):  
Ibrahim Mustapha Alibe ◽  
Khamirul Amin Matori ◽  
Mohd Hafiz Mohd Zaid ◽  
Salisu Nasir ◽  
Ali Mustapha Alibe ◽  
...  

The contemporary market needs for enhanced solid–state lighting devices has led to an increased demand for the production of willemite based phosphors using low-cost techniques. In this study, Ce3+ doped willemite nanoparticles were fabricated using polymer thermal treatment method. The special effects of the calcination temperatures and the dopant concentration on the structural and optical properties of the material were thoroughly studied. The XRD analysis of the samples treated at 900 °C revealed the development and or materialization of the willemite phase. The increase in the dopant concentration causes an expansion of the lattice owing to the replacement of larger Ce3+ ions for smaller Zn2+ ions. Based on the FESEM and TEM micrographs, the nanoparticles size increases with the increase in the cerium ions. The mean particles sizes were estimated to be 23.61 nm at 1 mol% to 34.02 nm at 5 mol% of the cerium dopant. The optical band gap energy of the doped samples formed at 900 °C decreased precisely by 0.21 eV (i.e., 5.21 to 5.00 eV). The PL analysis of the doped samples exhibits a strong emission at 400 nm which is ascribed to the transition of an electron from localized Ce2f state to the valence band of O2p. The energy level of the Ce3+ ions affects the willemite crystal lattice, thus causing a decrease in the intensity of the green emission at 530 nm and the blue emission at 485 nm. The wide optical band gap energy of the willemite produced is expected to pave the way for exciting innovations in solid–state lighting applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Osiekowicz ◽  
D. Staszczuk ◽  
K. Olkowska-Pucko ◽  
Ł. Kipczak ◽  
M. Grzeszczyk ◽  
...  

AbstractThe temperature effect on the Raman scattering efficiency is investigated in $$\varepsilon$$ ε -GaSe and $$\gamma$$ γ -InSe crystals. We found that varying the temperature over a broad range from 5 to 350 K permits to achieve both the resonant conditions and the antiresonance behaviour in Raman scattering of the studied materials. The resonant conditions of Raman scattering are observed at about 270 K under the 1.96 eV excitation for GaSe due to the energy proximity of the optical band gap. In the case of InSe, the resonant Raman spectra are apparent at about 50 and 270 K under correspondingly the 2.41 eV and 2.54 eV excitations as a result of the energy proximity of the so-called B transition. Interestingly, the observed resonances for both materials are followed by an antiresonance behaviour noticeable at higher temperatures than the detected resonances. The significant variations of phonon-modes intensities can be explained in terms of electron-phonon coupling and quantum interference of contributions from different points of the Brillouin zone.


Sign in / Sign up

Export Citation Format

Share Document