A Hardware Modeling of High Precision Floating Point Arcsine/Arccosine Function Based on CORDIC Algorithm

Author(s):  
Zhang Yin-Di ◽  
Liu Ming ◽  
Wang Ming-Jiang
Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Ming Liu ◽  
Wenjia Fu ◽  
Jincheng Xia

This paper proposes a novel architecture for the computation of XY-like functions based on the QH CORDIC (Quadruple-Step-Ahead Hyperbolic Coordinate Rotation Digital Computer) methodology. The proposed architecture converts direct computing of function XY to logarithm, multiplication, and exponent operations. The QH CORDIC methodology is a parallel variant of the traditional CORDIC algorithm. Traditional CORDIC suffers from long latency and large area, while the QH CORDIC has much lower latency. The computation of functions lnx and ex is accomplished with the QH CORDIC. To solve the problem of the limited range of convergence of the QH CORDIC, this paper employs two specific techniques to enlarge the range of convergence for functions lnx and ex, making it possible to deal with high-precision floating-point inputs. Hardware modeling of function XY using the QH CORDIC is plotted in this paper. Under the TSMC 65 nm standard cell library, this paper designs and synthesizes a reference circuit. The ASIC implementation results show that the proposed architecture has 30 more orders of magnitude of maximum relative error and average relative error than the state-of-the-art. On top of that, the proposed architecture is also superior to the state-of-the-art in terms of latency, word length and energy efficiency (power × latency × period /efficient bits).


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Anitha Juliette Albert ◽  
Seshasayanan Ramachandran

Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.


2021 ◽  
pp. 2150011
Author(s):  
Grzegorz Rafał Dec

This paper presents and discusses the implementation of an LSTM cell on an FPGA with an activation function inspired by the CORDIC algorithm. The realization is performed using both IEEE754 standard and 32-bit integer numbers. The case with floating-point arithmetic is analyzed with and without DSP blocks provided by the Xilinx design suite. The alternative implementation including the integer arithmetic was optimized for a minimal number of clock cycles. Presented implementation uses xc6slx150t-2fgg900 and achieves high calculations accuracy for both cases.


Integration ◽  
2017 ◽  
Vol 59 ◽  
pp. 247-254 ◽  
Author(s):  
Zongwei Li ◽  
Xingyin Xiong ◽  
Xiong Liu ◽  
Kedu Han ◽  
Ning Cong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document