A general growth model for the emergence of power-law distributions

Author(s):  
Shiwu Zhang ◽  
Jiming Liu
2020 ◽  
Vol 34 (29) ◽  
pp. 2050281
Author(s):  
Irving Rondón ◽  
Oscar Sotolongo-Costa ◽  
Jorge A. González ◽  
Jooyoung Lee

We present a general growth model based on nonextensive statistical physics. We show that the most common unidimensional growth laws such as power law, exponential, logistic, Richards, Von Bertalanffy, Gompertz can be obtained. This model belongs to a particular case reported in (Physica A 369, 645 (2006)). The new evolution equation resembles the “universality” revealed by West for ontogenetic growth (Nature 413, 628 (2001)). We show that for early times the model follows a power law growth as [Formula: see text], where the exponent [Formula: see text] classifies different types of growth. Several examples are given and discussed.


2007 ◽  
Vol 3 (S247) ◽  
pp. 279-287
Author(s):  
Patrick Antolin ◽  
Kazunari Shibata ◽  
Takahiro Kudoh ◽  
Daiko Shiota ◽  
David Brooks

AbstractAlfvén waves can dissipate their energy by means of nonlinear mechanisms, and constitute good candidates to heat and maintain the solar corona to the observed few million degrees. Another appealing candidate is the nanoflare-reconnection heating, in which energy is released through many small magnetic reconnection events. Distinguishing the observational features of each mechanism is an extremely difficult task. On the other hand, observations have shown that energy release processes in the corona follow a power law distribution in frequency whose index may tell us whether small heating events contribute substantially to the heating or not. In this work we show a link between the power law index and the operating heating mechanism in a loop. We set up two coronal loop models: in the first model Alfvén waves created by footpoint shuffling nonlinearly convert to longitudinal modes which dissipate their energy through shocks; in the second model numerous heating events with nanoflare-like energies are input randomly along the loop, either distributed uniformly or concentrated at the footpoints. Both models are based on a 1.5-D MHD code. The obtained coronae differ in many aspects, for instance, in the simulated intensity profile that Hinode/XRT would observe. The intensity histograms display power law distributions whose indexes differ considerably. This number is found to be related to the distribution of the shocks along the loop. We thus test the observational signatures of the power law index as a diagnostic tool for the above heating mechanisms and the influence of the location of nanoflares.


2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


2003 ◽  
Vol 40 (3) ◽  
pp. 803-806 ◽  
Author(s):  
Jinwen Chen

It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.


2021 ◽  
pp. 1-12
Author(s):  
Andrey Viktorovich Podlazov

I investigate the nature of the upper critical dimension for isotropic conservative sandpile models and calculate the emerging logarithmic corrections to power-law distributions. I check the results experimentally using the case of Manna model with the theoretical solution known for all statement starting from the two-dimensional one. In addition, based on this solution, I construct a non-trivial super-universal indicator for this model. It characterizes the distribution of avalanches by time the border of their region needs to pass its width.


Sign in / Sign up

Export Citation Format

Share Document