scholarly journals Coupling/tradeoff analysis and novel containment control for reactive power, output voltage in islanded Micro-Grid

Author(s):  
Renke Han ◽  
Lexuan Meng ◽  
Josep M. Guerrero ◽  
Qiuye Sun ◽  
Juan C. Vasquez
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 117
Author(s):  
Yu-Kai Chen ◽  
Hong-Wen Hsu ◽  
Chau-Chung Song ◽  
Yu-Syun Chen

This paper proposes the design and implementation of inductor-inductor-capacitor (LLC) converters with modules connected in series with the power scan method and communication scan network (CSN) to achieve MPPT and regulate the output voltage for the PV micro-grid system. The Dc/Dc converters includes six isolated LLC modules in series to supply ±380 V output voltage and track the maximum power point of the PV system. The series LLC converters are adopted to achieve high efficiency and high flexibility for the PV micro-grid system. The proposed global maximum power scan technique is implemented to achieve global maximum power tracking by adjusting the switching frequency of the LLC converter. To improve the system flexibility and achieve system redundancy, module failure can be detected in real time with a communication scan network, and then the output voltage of other modules will be changed by adjusting the switching frequency to maintain the same voltage as before the failure. Additionally, the proposed communication scan network includes the RS-485 interface of the MPPT series module and the CAN BUS communication interface with other subsystems’ communication for the PV micro-grid application system. Finally, a 6 kW MPPT prototype with a communication scan network is implemented and the proposed control method is verified for the PV system.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 3781-3791
Author(s):  
Xingwu Wang ◽  
Yongjun Lin ◽  
Bingshu Wang ◽  
Weiliang Liu ◽  
Kang Bai

Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Davide Astolfi

Pitch angle control is the most common means of adjusting the torque of wind turbines. The verification of its correct function and the optimization of its control are therefore very important for improving the efficiency of wind kinetic energy conversion. On these grounds, this work is devoted to studying the impact of pitch misalignment on wind turbine power production. A test case wind farm sited onshore, featuring five multi-megawatt wind turbines, was studied. On one wind turbine on the farm, a maximum pitch imbalance between the blades of 4.5 ° was detected; therefore, there was an intervention for recalibration. Operational data were available for assessing production improvement after the intervention. Due to the non-stationary conditions to which wind turbines are subjected, this is generally a non-trivial problem. In this work, a general method was formulated for studying this kind of problem: it is based on the study, before and after the upgrade, of the residuals between the measured power output and a reliable model of the power output itself. A careful formulation of the model is therefore crucial: in this work, an automatic feature selection algorithm based on stepwise multivariate regression was adopted, and it allows identification of the most meaningful input variables for a multivariate linear model whose target is the power of the wind turbine whose pitch has been recalibrated. This method can be useful, in general, for the study of wind turbine power upgrades, which have been recently spreading in the wind energy industry, and for the monitoring of wind turbine performances. For the test case of interest, the power of the recalibrated wind turbine is modeled as a linear function of the active and reactive power of the nearby wind turbines, and it is estimated that, after the intervention, the pitch recalibration provided a 5.5% improvement in the power production below rated power. Wind turbine practitioners, in general, should pay considerable attention to the pitch imbalance, because it increases loads and affects the residue lifetime; in particular, the results of this study indicate that severe pitch misalignment can heavily impact power production.


2019 ◽  
Vol 30 (7) ◽  
pp. 998-1009 ◽  
Author(s):  
XF Zhang ◽  
HS Tzou

Based on the electromechanical coupling of piezoelectricity, a piezoelectric ring energy harvester is designed and tested in this study, such that the harvester can be used to power electric devices in the closed-circuit condition. Output energies across the external resistive load are evaluated when the ring energy harvester is subjected to harmonic excitations, and various design parameters are discussed to maximize the power output. In order to validate the theoretical energy harvesting results, laboratory experiments are conducted. Comparing experiment results with theoretical ones, the errors between them are under 10% for the output voltage. Laboratory experiments demonstrate that the ring energy harvester is workable in practical applications.


2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


2014 ◽  
Vol 986-987 ◽  
pp. 1214-1217
Author(s):  
Yu Wei Li

For micro-grid with multiple distributed power supply, a micro-grid distributed reactive power-voltage control method is proposed in this paper. By introducing active power disturbance, the load reactive power can be distributed in accordance with the distributed generation power rate, which leads to accurate distribution. At the same time, in order to ensure system voltage output stability in the rate, based on consistency and input/output linearization theory, under the distributed power multi-agent network topology, the distributed nonlinear co-droop controller is designed to make up for voltage fluctuation caused by active power disturbance. The simulation results verified the correctness and feasibility of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document