Slow neuronal oscillations in the resting brain vs task execution: A BSS investigation of EEG recordings

Author(s):  
Charmaine Demanuele ◽  
Edmund J S Sonuga-Barke ◽  
Christopher J James
2018 ◽  
Author(s):  
Natalie Schaworonkow ◽  
Vadim V. Nikulin

AbstractNeuronal oscillations are ubiquitous in the human brain and are implicated in virtually all brain functions. Often they are referred to by their frequency content, i.e., α-, β-, γ-oscillations. Although they indeed can be described by a prominent peak in the power spectrum, their waveform is not necessarily sinusoidal and shows a rather complex morphology which needs to be captured with multiple spectral harmonics. Both frequency and temporal descriptions of such non-sinusoidal neuronal oscillations can be utilized. However, in non-invasive EEG/MEG recordings the waveform of oscillations often takes a sinusoidal shape which in turn leads to a rather oversimplified view on oscillatory processes.In this study, we show in simulations how spatial synchronization can mask non-sinusoidal features of the underlying rhythmic neuronal processes. Consequently, the degree of non-sinusoidality can serve as a measure of spatial synchronization. To confirm this empirically, we show that a mixture of EEG components is indeed associated with more sinusoidal oscillations compared to the waveform of oscillations in each constituent component. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal signals strongly affects the amplitude ratio of the spectral harmonics constituting the waveform. This in turn has high relevance for the interpretation of the relative strength of spectral peaks, which is commonly used for inferring neuronal signatures corresponding to specific behavioral states.Moreover, our simulations show how spatial mixing can affect the strength and even the direction of the amplitude coupling between constituent neuronal harmonics. Consistently with these simulations, we also demonstrate these effects in real EEG recordings. Our findings have far reaching implications for the neu-rophysiological interpretation of neuronal oscillations and cross-frequency interactions, as well as for the unequivocal determination of oscillatory phase.


2019 ◽  
Author(s):  
Fanny Grisetto ◽  
Yvonne N. Delevoye-Turrell ◽  
Clémence Roger

Aggressive behaviors in pathological and healthy populations have been largely related to poor cognitive control functioning. However, few studies investigated the influence of aggressive traits (i.e., aggressiveness) on cognitive control. In the current study, we investigated the effects of aggressiveness on cognitive control abilities and particularly, on performance monitoring. Thirty-two participants performed a Simon task while electroencephalography (EEG) and electromyography (EMG) were recorded. Participants were classified as high and low aggressive using the BPAQ questionnaire (Buss & Perry, 1992). EMG recordings were used to reveal three response types by uncovering small incorrect muscular activations in ~15% of correct trials (i.e., partial-errors) that have to be distinguished from full-error and pure-correct responses. For these three response types, EEG recordings were used to extract fronto-central negativities indicative of performance monitoring, the error and correct (-related) negativities (ERN/Ne and CRN/Nc). Behavioral results indicated that the high aggressiveness group had a larger congruency effect compared to the low aggressiveness group, but there were no differences in accuracy. EEG results revealed a global reduction in performance-related negativities amplitudes in all the response types in the high aggressiveness group compared to the low aggressiveness group. Interestingly, the distinction between the ERN/Ne and the CRN/Nc components was preserved both in high and low aggressiveness groups. In sum, high aggressive traits did not affect the capacity to self-evaluate erroneous from correct actions but are associated with a decrease in the importance given to one’s own performance. The implication of these findings are discussed in relation to pathological aggressiveness.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Schreiner ◽  
Marit Petzka ◽  
Tobias Staudigl ◽  
Bernhard P. Staresina

AbstractSleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.


Author(s):  
Marcus O. Harrington ◽  
Scott A. Cairney

Abstract Purpose of Review Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations. Recent Findings Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations. Summary Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.


2021 ◽  
Author(s):  
Luis Mercado ◽  
Lucero Alvarado ◽  
Griselda Quiroz-Compean ◽  
Rebeca Romo-Vazquez ◽  
Hugo Vélez-Pérez ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 286
Author(s):  
Soheil Keshmiri

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.


2021 ◽  
Vol 101 (3) ◽  
Author(s):  
Korbinian Nottensteiner ◽  
Arne Sachtler ◽  
Alin Albu-Schäffer

AbstractRobotic assembly tasks are typically implemented in static settings in which parts are kept at fixed locations by making use of part holders. Very few works deal with the problem of moving parts in industrial assembly applications. However, having autonomous robots that are able to execute assembly tasks in dynamic environments could lead to more flexible facilities with reduced implementation efforts for individual products. In this paper, we present a general approach towards autonomous robotic assembly that combines visual and intrinsic tactile sensing to continuously track parts within a single Bayesian framework. Based on this, it is possible to implement object-centric assembly skills that are guided by the estimated poses of the parts, including cases where occlusions block the vision system. In particular, we investigate the application of this approach for peg-in-hole assembly. A tilt-and-align strategy is implemented using a Cartesian impedance controller, and combined with an adaptive path executor. Experimental results with multiple part combinations are provided and analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document