The Vds Signal of Power Switch for Boost PFC Current Detection

Author(s):  
Che-Wei Hsu ◽  
Kuei-Pin Chiu ◽  
Jiann-Fuh Chen
Author(s):  
Chunlei Wu ◽  
Suying Yao

Abstract Lock-in IR-OBIRCH analysis, as a kind of static thermal laser stimulation (S-TLS) technique, is very effective to isolate a fault for the parametric failure cases. However, its capability is limited to localize a defect when the IC is operated under a defined operating condition. Whereas the dynamic thermal laser stimulation (D-TLS) technique is good at locating a fault while the IC is operated under some functions to activate the failure. In this paper, a novel method is presented to realize DTLS just by Lock-in IR-OBIRCH assisted with a Current Detection Probe Head. Two cases are studied to demonstrate the effectiveness of this method.


2011 ◽  
Vol 25 (8) ◽  
pp. 711-715 ◽  
Author(s):  
Shujiang Yan ◽  
Fei Tang ◽  
Xiaohao Wang ◽  
Fan Wang ◽  
Tao Yang

1989 ◽  
Vol 21 (6-7) ◽  
pp. 443-453 ◽  
Author(s):  
S. K. Dentel ◽  
K. M. Kingery

In spite of the increased use of streaming current detectors (SCDs) as a means of monitoring and/or controlling coagulant dosage, knowledge regarding fundamental workings is incomplete. This paper provides an initial attempt at predicting and verifying functioning compared to electrophoretic mobility. The instrument's components -- the sensor and the signal processor -- are first described. Equations modelling electro-double layer behavior in its sensor are then developed. Simplifying assumptions include the use of a capacitance model of the double layer and a triangular velocity profile for fluid within the sensor's annulus. More complex modelling approaches are also suggested which incorporate the Gouy-Chapman electro-double layer model and an exact solution for the velocity profile. Experimental results confirm predictions of the simplified model under conditions of low potential. A monotonic relationship exists between streaming current electrophoretic mobility, which is required for its use as a control parameter. Deviations from model predictions are suggested to be due to charge characteristics of the sensor surfaces themselves.


Author(s):  
F. Capy ◽  
M. Breil ◽  
F. Richardeau ◽  
A. Bourennane ◽  
J.P. Laur ◽  
...  
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1112
Author(s):  
Yu-En Wu ◽  
Jyun-Wei Wang

This study developed a novel, high-efficiency, high step-up DC–DC converter for photovoltaic (PV) systems. The converter can step-up the low output voltage of PV modules to the voltage level of the inverter and is used to feed into the grid. The converter can achieve a high step-up voltage through its architecture consisting of a three-winding coupled inductor common iron core on the low-voltage side and a half-wave voltage doubler circuit on the high-voltage side. The leakage inductance energy generated by the coupling inductor during the conversion process can be recovered by the capacitor on the low-voltage side to reduce the voltage surge on the power switch, which gives the power switch of the circuit a soft-switching effect. In addition, the half-wave voltage doubler circuit on the high-voltage side can recover the leakage inductance energy of the tertiary side and increase the output voltage. The advantages of the circuit are low loss, high efficiency, high conversion ratio, and low component voltage stress. Finally, a 500-W high step-up converter was experimentally tested to verify the feasibility and practicability of the proposed architecture. The results revealed that the highest efficiency of the circuit is 98%.


Sign in / Sign up

Export Citation Format

Share Document