Sar-Image Based Urban Change Detection in Bangkok, Thailand Using Deep Learning

Author(s):  
Raveerat Jaturapitpornchai ◽  
Masashi Matsuoka ◽  
Naruo Kanemoto ◽  
Shigeki Kuzuoka ◽  
Riho Ito ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 548 ◽  
Author(s):  
Xinzheng Zhang ◽  
Guo Liu ◽  
Ce Zhang ◽  
Peter M. Atkinson ◽  
Xiaoheng Tan ◽  
...  

Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery.


2021 ◽  
Vol 13 (21) ◽  
pp. 4394
Author(s):  
Zainoolabadien Karim ◽  
Terence L. van Zyl

Differential interferometric synthetic aperture radar (DInSAR), coherence, phase, and displacement are derived from processing SAR images to monitor geological phenomena and urban change. Previously, Sentinel-1 SAR data combined with Sentinel-2 optical imagery has improved classification accuracy in various domains. However, the fusing of Sentinel-1 DInSAR processed imagery with Sentinel-2 optical imagery has not been thoroughly investigated. Thus, we explored this fusion in urban change detection by creating a verified balanced binary classification dataset comprising 1440 blobs. Machine learning models using feature descriptors and non-deep learning classifiers, including a two-layer convolutional neural network (ConvNet2), were used as baselines. Transfer learning by feature extraction (TLFE) using various pre-trained models, deep learning from random initialization, and transfer learning by fine-tuning (TLFT) were all evaluated. We introduce a feature space ensemble family (FeatSpaceEnsNet), an average ensemble family (AvgEnsNet), and a hybrid ensemble family (HybridEnsNet) of TLFE neural networks. The FeatSpaceEnsNets combine TLFE features directly in the feature space using logistic regression. AvgEnsNets combine TLFEs at the decision level by aggregation. HybridEnsNets are a combination of FeatSpaceEnsNets and AvgEnsNets. Several FeatSpaceEnsNets, AvgEnsNets, and HybridEnsNets, comprising a heterogeneous mixture of different depth and architecture models, are defined and evaluated. We show that, in general, TLFE outperforms both TLFT and classic deep learning for the small dataset used and that larger ensembles of TLFE models do not always improve accuracy. The best performing ensemble is an AvgEnsNet (84.862%) comprised of a ResNet50, ResNeXt50, and EfficientNet B4. This was matched by a similarly composed FeatSpaceEnsNet with an F1 score of 0.001 and variance of 0.266 less. The best performing HybridEnsNet had an accuracy of 84.775%. All of the ensembles evaluated outperform the best performing single model, ResNet50 with TLFE (83.751%), except for AvgEnsNet 3, AvgEnsNet 6, and FeatSpaceEnsNet 5. Five of the seven similarly composed FeatSpaceEnsNets outperform the corresponding AvgEnsNet.


Author(s):  
Dimas I. Alves ◽  
Cristian Muller ◽  
Bruna G. Palm ◽  
Mats I. Pettersson ◽  
Viet T. Vu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Sign in / Sign up

Export Citation Format

Share Document