scholarly journals Hurricane Ocean Wind Speeds

Author(s):  
Ad Stoffelen ◽  
Gert-Jan Marseille ◽  
Weicheng Ni ◽  
Alexis Mouche ◽  
Federica Polverari ◽  
...  
Keyword(s):  
2020 ◽  
Vol 37 (2) ◽  
pp. 279-297 ◽  
Author(s):  
Agustinus Ribal ◽  
Ian R. Young

AbstractGlobal ocean wind speed observed from seven different scatterometers, namely, ERS-1, ERS-2, QuikSCAT, MetOp-A, OceanSat-2, MetOp-B, and Rapid Scatterometer (RapidScat) were calibrated against National Data Buoy Center (NDBC) data to form a consistent long-term database of wind speed and direction. Each scatterometer was calibrated independently against NDBC buoy data and then cross validation between scatterometers was performed. The total duration of all scatterometer data is approximately 27 years, from 1992 until 2018. For calibration purposes, only buoys that are greater than 50 km offshore were used. Moreover, only scatterometer data within 50 km of the buoy and for which the overpass occurred within 30 min of the buoy recording data were considered as a “matchup.” To carry out the calibration, reduced major axis (RMA) regression has been applied where the regression minimizes the size of the triangle formed by the vertical and horizontal offsets of the data point from the regression line and the line itself. Differences between scatterometer and buoy data as a function of time were investigated for long-term stability. In addition, cross validation between scatterometers and independent altimeters was also performed for consistency. The performance of the scatterometers at high wind speeds was examined against buoy and platform measurements using quantile–quantile (Q–Q) plots. Where necessary, corrections were applied to ensure scatterometer data agreed with the in situ wind speed for high wind speeds. The resulting combined dataset is believed to be unique, representing the first long-duration multimission scatterometer dataset consistently calibrated, validated and quality controlled.


2021 ◽  
Vol 299 ◽  
pp. 01001
Author(s):  
He Wang ◽  
Chaoying Shi ◽  
Jianhua Zhu

Sentinel-1A/B satellites operating in wave mode provide ocean winds dataset on a continuous and global basis. In this study, wind speeds derived from Sentinel-1A/B wave mode imagery from November 2018 to October 2020 are evaluated against HSCAT scatterometer aboard Chinese satellite HY-2B. Here, due to the close equatorial crossing times between Sentinel-1 and HY-2B, the spatio-temporal criteria of 50 km and 30 min yield large amount match-ups. Comparison results show a good agreement between wind speeds derived from the two types of radars: synthetic aperture radar and scatterometer. Impact of the presence of pure swell on the evaluation results is also discussed.


2020 ◽  
Author(s):  
Kaiqiang Deng ◽  
Cesar Azorin-Molina ◽  
Lorenzo Minola ◽  
Deliang Chen

<p>The changes in near-surface (10-m height) wind speed have direct impacts on human society, such as utilization of wind energy, air pollution dispersion and dust storm frequency, which requires comprehensive assessment and improved understanding. Based on ground-based observations and multiple atmospheric reanalysis datasets, previous research revealed significant negative and positive trends in wind speed over land and oceans, respectively. In this study, we used Coupled Model Intercomparison Project Phase 6 (CMIP6) historical simulations to investigate the association between global mean wind speed changes and human-induced forcing. It is found that both unforced pre-industrial control run and historical natural forcing experiments failed in reproducing the observed trends in land and ocean wind speeds. However, the CMIP6 historical greenhouse gas forcing successfully simulated the increasing trend in ocean wind speed, while the CMIP6 historical aerosol forcing and experiments with land use changes seemed to have caused a decreasing trend in wind speeds over both land and ocean, suggesting that anthropogenic forcings are crucial drivers for the recent changes in global wind speed. Further attribution studies are needed to better understand wind speed variability under a warming climate.</p>


Kapal ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 8-17
Author(s):  
Madi Madi ◽  
Tuswan Tuswan ◽  
Ilham Dwi Arirohman ◽  
Abdi Ismail

The blade is the most critical part of turbine design because it is used to convert kinetic to mechanical energy. In general, the blade types used for ocean wind turbines are taper and taperless blades, like those operated at Ciheras Coastline. Previous research has been analyzed the type of airfoil used in designing taper blades for ocean wind turbines using NACA 4412, which was selected as the optimal foil configuration at sea wind speeds of 12 m/s. In this study, the comparison of taper and taperless blade designs using NACA 4412 at a wind speed of 12 m/s is analyzed. The comparative study with previous research has been carried out and resulted in the same graphical patterns and performance results. In this study, the focus is on investigating the performance coefficient of power, mechanical power, and electrical power. The final result shows that taper blade designs are highly recommended for use in ocean wind turbines compared to taperless blades. In general, the performance produced by taper blades is more significant than taperless blades at relatively high wind speeds. The maximum performance coefficient of power, mechanical power, and electrical power generated by the taper blades in sequent are 0.47, 1535 watts, and 786 watts, while the taperless blades have 0.44, 1437 watts, and 736 watts.


2013 ◽  
Vol 30 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Raul Vicen-Bueno ◽  
Jochen Horstmann ◽  
Eric Terril ◽  
Tony de Paolo ◽  
Jens Dannenberg

Abstract This paper proposes a novel algorithm for retrieving the ocean wind vector from marine radar image sequences in real time. It is presented as an alternative to mitigate anemometer problems, such as blockage, shadowing, and turbulence. Since wind modifies the sea surface, the proposed algorithm is based on the dependence of the sea surface backscatter on wind direction and speed. This algorithm retrieves the wind vector using radar measurements in the range of 200–1500 m. Wind directions are retrieved from radar images integrated over time and smoothed (averaged) in space by searching for the maximum radar cross section in azimuth as the radar cross section is largest for upwind directions. Wind speeds are retrieved by an empirical third-order polynomial geophysical model function (GMF), which depends on the range distance in the upwind direction to a preselected intensity level and the intensity level. This GMF is approximated from a dataset of collocated in situ wind speed and radar measurements (~31 000 measurements, ~56 h). The algorithm is validated utilizing wind and radar measurements acquired on the Research Platform (R/P) FLIP (for Floating Instrumentation Platform) during the 13-day Office of Naval Research experiment on High-Resolution Air–Sea Interaction (HiRes) in June 2010. Wind speeds ranged from 4 to 22 m s−1. Once the proposed algorithm is tuned, standard deviations and biases of 14° and −1° for wind directions and of 0.8 and −0.1 m s−1 for wind speeds are observed, respectively. Additional studies of uncertainty and error of the retrieved wind speed are also reported.


1996 ◽  
Vol 17 (15) ◽  
pp. 2897-2913 ◽  
Author(s):  
J. BOUTIN ◽  
L. SIEFRIDT ◽  
J. ETCHETO ◽  
B. BARNIER
Keyword(s):  

Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Sign in / Sign up

Export Citation Format

Share Document