scholarly journals Real-Time Ocean Wind Vector Retrieval from Marine Radar Image Sequences Acquired at Grazing Angle

2013 ◽  
Vol 30 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Raul Vicen-Bueno ◽  
Jochen Horstmann ◽  
Eric Terril ◽  
Tony de Paolo ◽  
Jens Dannenberg

Abstract This paper proposes a novel algorithm for retrieving the ocean wind vector from marine radar image sequences in real time. It is presented as an alternative to mitigate anemometer problems, such as blockage, shadowing, and turbulence. Since wind modifies the sea surface, the proposed algorithm is based on the dependence of the sea surface backscatter on wind direction and speed. This algorithm retrieves the wind vector using radar measurements in the range of 200–1500 m. Wind directions are retrieved from radar images integrated over time and smoothed (averaged) in space by searching for the maximum radar cross section in azimuth as the radar cross section is largest for upwind directions. Wind speeds are retrieved by an empirical third-order polynomial geophysical model function (GMF), which depends on the range distance in the upwind direction to a preselected intensity level and the intensity level. This GMF is approximated from a dataset of collocated in situ wind speed and radar measurements (~31 000 measurements, ~56 h). The algorithm is validated utilizing wind and radar measurements acquired on the Research Platform (R/P) FLIP (for Floating Instrumentation Platform) during the 13-day Office of Naval Research experiment on High-Resolution Air–Sea Interaction (HiRes) in June 2010. Wind speeds ranged from 4 to 22 m s−1. Once the proposed algorithm is tuned, standard deviations and biases of 14° and −1° for wind directions and of 0.8 and −0.1 m s−1 for wind speeds are observed, respectively. Additional studies of uncertainty and error of the retrieved wind speed are also reported.

2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


2010 ◽  
Vol 7 (4) ◽  
pp. 5719-5755 ◽  
Author(s):  
O. Wurl ◽  
E. Wurl ◽  
L. Miller ◽  
K. Johnson ◽  
S. Vagle

Abstract. Results from a study of surfactants in the sea-surface microlayer (SML) in different regions of the ocean (subtropical, temperate, polar) suggest that this interfacial layer between the ocean and atmosphere covers the ocean's surface to a significant extent. Threshold values at which primary production acts as a significant source of natural surfactants have been derived from the enrichment of surfactants in the SML relative to underlying water and local primary production. Similarly, we have also derived a wind speed threshold at which the SML is disrupted. The results suggest that surfactant enrichment in the SML is typically greater in oligotrophic regions of the ocean than in more productive waters. Furthermore, the enrichment of surfactants persisted at wind speeds of up to 10 m s−1 without any observed depletion above 5 m s−1. This suggests that the SML is stable enough to exist even at the global average wind speed of 6.6 m s−1. Global maps of primary production and wind speed are used to estimate the ocean's SML coverage. The maps indicate that wide regions of the Pacific and Atlantic Oceans between 30° N and 30° S are more significantly affected by the SML than northern of 30° N and southern of 30° S due to higher productivity (spring/summer blooms) and wind speeds exceeding 12 m s−1 respectively.


2020 ◽  
Vol 37 (2) ◽  
pp. 279-297 ◽  
Author(s):  
Agustinus Ribal ◽  
Ian R. Young

AbstractGlobal ocean wind speed observed from seven different scatterometers, namely, ERS-1, ERS-2, QuikSCAT, MetOp-A, OceanSat-2, MetOp-B, and Rapid Scatterometer (RapidScat) were calibrated against National Data Buoy Center (NDBC) data to form a consistent long-term database of wind speed and direction. Each scatterometer was calibrated independently against NDBC buoy data and then cross validation between scatterometers was performed. The total duration of all scatterometer data is approximately 27 years, from 1992 until 2018. For calibration purposes, only buoys that are greater than 50 km offshore were used. Moreover, only scatterometer data within 50 km of the buoy and for which the overpass occurred within 30 min of the buoy recording data were considered as a “matchup.” To carry out the calibration, reduced major axis (RMA) regression has been applied where the regression minimizes the size of the triangle formed by the vertical and horizontal offsets of the data point from the regression line and the line itself. Differences between scatterometer and buoy data as a function of time were investigated for long-term stability. In addition, cross validation between scatterometers and independent altimeters was also performed for consistency. The performance of the scatterometers at high wind speeds was examined against buoy and platform measurements using quantile–quantile (Q–Q) plots. Where necessary, corrections were applied to ensure scatterometer data agreed with the in situ wind speed for high wind speeds. The resulting combined dataset is believed to be unique, representing the first long-duration multimission scatterometer dataset consistently calibrated, validated and quality controlled.


2019 ◽  
Vol 11 (2) ◽  
pp. 153 ◽  
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

In contrast to co-polarization (VV or HH) synthetic aperture radar (SAR) images, cross-polarization (CP for VH or HV) SAR images can be used to retrieve sea surface wind speeds larger than 20 m/s without knowing the wind directions. In this paper, a new wind speed retrieval model is proposed for European Space Agency (ESA) Sentinel-1A (S-1A) Extra-Wide swath (EW) mode VH-polarized images. Nineteen S-1A images under tropical cyclone condition observed in the 2016 hurricane season and the matching data from the Soil Moisture Active Passive (SMAP) radiometer are collected and divided into two datasets. The relationships between normalized radar cross-section (NRCS), sea surface wind speed, wind direction and radar incidence angle are analyzed for each sub-band, and an empirical retrieval model is presented. To correct the large biases at the center and at the boundaries of each sub-band, a corrected model with an incidence angle factor is proposed. The new model is validated by comparing the wind speeds retrieved from S-1A images with the wind speeds measured by SMAP. The results suggest that the proposed model can be used to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.


2018 ◽  
Vol 35 (8) ◽  
pp. 1621-1631 ◽  
Author(s):  
Tomoya Shimura ◽  
Minoru Inoue ◽  
Hirofumi Tsujimoto ◽  
Kansuke Sasaki ◽  
Masato Iguchi

AbstractSmall unmanned aerial vehicles (UAVs), also known as drones, have recently become promising tools in various fields. We investigated the feasibility of wind vector profile measurement using an ultrasonic anemometer installed on a 1-m-wide hexarotor UAV. Wind vectors measured by the UAV were compared to observations by a 55-m-high meteorological tower, over a wide range of wind speed conditions up to 11 m s−1, which is a higher wind speed range than those used in previous studies. The wind speeds and directions measured by the UAV and the tower were in good agreement, with a root-mean-square error of 0.6 m s−1 and 12° for wind speed and direction, respectively. The developed method was applied to field meteorological observations near a volcano, and the wind vector profiles, along with temperature and humidity, were measured by the UAV for up to an altitude of 1000 m, which is a higher altitude range than those used in previous studies. The wind vector profile measured by the UAV was compared with Doppler lidar measurements (collected several kilometers away from the UAV measurements) and was found to be qualitatively similar to that captured by the Doppler lidar, and it adequately represented the features of the atmospheric boundary layer. The feasibility of wind profile measurement up to 1000 m by a small rotor-based UAV was clarified over a wide range of wind speed conditions.


2017 ◽  
Author(s):  
Cui-Ci Sun ◽  
Martin Sperling ◽  
Anja Engel

Abstract. Biogenic gels particles, such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP), are important components in the sea-surface microlayer (SML). The accumulation of gel particles in the SML and their potential implications for gas exchange and emission of primary organic aerosols have generated considerable research interest in recent years. Changes in the particle-size distribution (PSD) can provide important information for the understanding of physical and chemical processes involving gel particles, such as aggregation, degradation or loss. So far, little is known regarding the influence of wind speed on the size distribution of marine gel particles in the surface microlayer. Here, we present results on the effect of different wind speeds on the PSD of TEP and CSP during a wind wave channel experiment in the Aeolotron. Total area of TEP and CSP were exponentially related to wind speed in the SML. At wind speeds  8 m s−1 also significantly altered the PSD slope of TEP in the 2–16 μm size range toward smaller size. Changes in spectral slopes at wind speeds > 8 m s−1 were more pronounced for TEP than for CSP indicating a high aggregation potential for TEP in the SML, potentially enhancing the export of TEP by aggregates settling out of the SML. Our experiment provided evidence for the control of wind speed on the accumulation of biogenic gel particles and their PSD changes, providing a useful insight into particle dynamics and biophysical processes at the interface between air and sea.


2007 ◽  
Vol 24 (9) ◽  
pp. 1629-1642 ◽  
Author(s):  
Heiko Dankert ◽  
Jochen Horstmann

Abstract A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are derived using a neural network by parameterizing the relationship between the wind vector and the normalized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the research platform FINO-I, which provides environmental data such as wind measurements at different heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters. The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s−1. In contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean surface makes the system independent of the sensors’ motion and installation height as well as the effects due to platform-induced turbulence.


2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


2021 ◽  
Vol 13 (10) ◽  
pp. 1929
Author(s):  
Yury Yu. Yurovsky ◽  
Vladimir N. Kudryavtsev ◽  
Semyon A. Grodsky ◽  
Bertrand Chapron

The effective normalized radar cross section (NRCS) of breaking waves, σwb, is empirically derived based on joint synchronized Ka-band radar and video records of the sea surface from a research tower. The σwb is a key parameter that, along with the breaker footprint fraction, Q, defines the contribution of non-polarized backscattering, NP =σwbQ, to the total sea surface NRCS. Combined with the right representation of the regular Bragg and specular backscattering components, the NP component is fundamental to model and interpret sea surface radar measurements. As the first step, the difference between NRCS values for breaking and non-breaking conditions is scaled with the optically-observed Q and compared with the geometric optics model of breaker backscattering. Optically-derived Q might not be optimal to represent the effect of breaking waves on the radar measurements. Alternatively, we rely on the breaking crest length that is firmly detected by the video technique and the empirically estimated breaker decay (inverse wavelength) scale in the direction of breaking wave propagation. A simplified model of breaker NRCS is then proposed using the geometric optics approach. This semi-analytical model parameterizes the along-wave breaker decay from reported breaker roughness spectra, obtained in laboratory experiments with mechanically-generated breakers. These proposed empirical breaker NRCS estimates agree satisfactorily with observations.


2021 ◽  
Author(s):  
Emanuele Silvio Gentile ◽  
Suzanne L. Gray ◽  
Janet F. Barlow ◽  
Huw W. Lewis ◽  
John M. Edwards

<p>Accurate modelling of air-sea surface exchanges is crucial for reliable extreme surface wind forecasts.  While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between atmosphere, ocean and wave model components.</p><p>Here, we present the results of studying the sensitivity of extreme surface wind speeds to air-sea exchanges at kilometre scale using coupled and uncoupled configurations of the Met Office's UK Regional Coupled Environmental Prediction (UKC4) system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 ms<sup>-1</sup> over the UK.</p><p>Compared to the atmosphere-only results, coupling to ocean decreases the domain-average sea surface temperature by up to 0.5 K. Inclusion of coupling to waves decreases the 98th percentile 10-m wind speed by up to 2 ms<sup>-1</sup> as young, growing wind waves decrease wind speed by increasing the sea aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1ms <sup>-1,</sup> due to enhanced boundary-layer turbulence which partially offsets air-sea momentum transfer.</p><p>Using a new drag parametrization based on the COARE~4.0 scheme, with a cap on the neutral drag coefficient and decrease for wind speeds exceeding 27 ms<sup>-1 </sup>, the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind skill as coupling to waves, with  the  advantage  of saving the computational cost of the ocean and wave models. </p>


Sign in / Sign up

Export Citation Format

Share Document