Optimal Air-gap of a Magnetic Resonant Inductive Link for Maximum Wireless Power Transfer

Author(s):  
Siddharth Sahany ◽  
Sushree S Biswal ◽  
Pradyumna K Sahoo ◽  
Durga P Kar ◽  
Satyanarayan Bhuyan
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Jiarui Bao ◽  
Shuyan Hu ◽  
Zibin Xie ◽  
Guangxi Hu ◽  
Ye Lu ◽  
...  

This work focuses on the optimization of coupling coefficient (k) of the inductive link for the wireless power transfer (WPT) system to be used in implantable medical devices (IMDs) of centimeter size. The analytic expression of k is presented. Simulations are conducted by using the high-frequency structure simulator (HFSS). Analytic results are verified with simulations. The receiving (Rx) coil is implanted in the body and set as a circular coil with a radius of 5 millimeters for reducing the risk of tissue inflammation. The inductive link under misalignment scenarios is optimized to improve k. When the distance between the transmitting (Tx) and Rx coils is fixed at 20 mm, it is found that, to maximize k, the Tx coil in a planar spiral configuration with an average radius of 20 mm is preferred, and the Rx coil in a solenoid configuration with a wire pitch of 0.7 mm is recommended. Based on these optimization results, an inductive link WPT system is proposed; the coupling coefficient k, the power transfer efficiency (PTE), and the maximum power delivered to the load (MPDL) of the system are obtained with both simulation and experiment. Different media of air, muscle, and bone separating the Tx and Rx coils are tested. For the muscle (bone) medium, PTE is 44.14% (43.07%) and MPDL is 145.38 mW (128.13 mW), respectively.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2023
Author(s):  
Sebastian Stoecklin ◽  
Adnan Yousaf ◽  
Gunnar Gidion ◽  
Leonhard Reindl ◽  
Stefan J. Rupitsch

Near-field interfaces with miniaturized coil systems and low output power levels, such as applied in biomedical sensor systems, can suffer from severe efficiency degradation due to dynamic impedance mismatches, reducing battery life of the power transmitter unit and requiring to increase the level of electromagnetic emission. Moreover, the stability of weakly-coupled power transfer systems is generally limited by transient changes in coil alignment and load power consumption. Hence, a central research question in the domain of wireless power transfer is how to realize an adaptive impedance matching system under the constraints of a simultaneous power feedback to increase the system’s efficiency and stability, while maintaining circuit characteristics such as small size, low power consumption and fast reaction times. This paper presents a novel approach based on a two-stage control loop implemented in the primary-side reader unit, which uses a digital PI controller to maintain the rectifier output voltage for power feedback and an on-top perturb-and-observe controller configuring the setpoint of the voltage controller to maximize efficiency. The paper mathematically analyzes the AC and DC transfer characteristics of a resonant inductive link to design the reactive AC matching network, the digital voltage controller and ultimately the DC-domain impedance matching algorithm. It was found that static reactive L networks result in suitable efficiency levels for coils with sufficiently high quality factor even without adaptive tuning of operational frequency or reactive components. Furthermore, the regulated output voltage of the rectifier is a direct measure of the DC load impedance when using a regular DC/DC converter to supply the load circuits, so that this quantity can be tuned to maximize efficiency. A prototype implementation demonstrates the algorithms in a 40.68 MHz inductive link with load power levels from 10 to 100 mW and tuning time constants of 300 ms, while allowing for a simplified receiver with a footprint smaller than 200 mm2 and a self-consumption below 1 mW. Hence, the presented concepts enable adaptive impedance matching with favorable characteristics for low-energy sensor systems, i.e., minimized footprint, power level and reaction time.


2021 ◽  
Vol 13 (21) ◽  
pp. 12257
Author(s):  
Chia-Hsuan Wu ◽  
Ching-Ming Lai ◽  
Tomokazu Mishima ◽  
Zheng-Bo Liang

The objective of this paper is to study a 22 kW high-power wireless power transfer (WPT) system for battery charging in electric vehicles (EVs). The proposed WPT system consists of a three-phase half-bridge LC–LC (i.e., primary LC/secondary LC) resonant power converter and a three-phase sandwich wound coil set (transmitter, Tx; receiver, Rx). To transfer power effectively with a 250 mm air gap, the WPT system uses three-phase, sandwich-wound Tx/Rx coils to minimize the magnetic flux leakage effect and increase the power transfer efficiency (PTE). Furthermore, the relationship of the coupling coefficient between the Tx/Rx coils is complicated, as the coupling coefficient is not only dominated by the coupling strength of the primary and secondary sides but also relates to the primary or secondary three-phase magnetic coupling effects. In order to analyze the proposed three-phase WPT system, a detailed equivalent circuit model is derived for a better understanding. To give a design reference, a novel coil design method that can achieve high conversion efficiency for a high-power WPT system was developed based on a simulation-assisted design procedure. A pair of magnetically coupled Tx and Rx coils and the circuit parameters of the three-phase half-bridge LC–LC resonant converter for a 22 kW WPT system are adjusted through PSIM and CST STUDIO SUITE™ simulation to execute the derivation of the design formulas. Finally, the system achieved a PTE of 93.47% at an 85 kHz operating frequency with a 170 mm air gap between the coils. The results verify the feasibility of a simulation-assisted design in which the developed coils can comply with a high-power and high-efficiency WPT system in addition to a size reduction.


Sign in / Sign up

Export Citation Format

Share Document