Biophysical basis, stability, and directional response characteristics of multiplicative lateral inhibitory neural networks

Author(s):  
Bouzerdoum ◽  
Pinter
2020 ◽  
Vol 4 (3) ◽  
pp. 852-870
Author(s):  
Jannik Luboeinski ◽  
Tatjana Tchumatchenko

Optogenetic stimulation has become the method of choice for investigating neural computation in populations of neurons. Optogenetic experiments often aim to elicit a network response by stimulating specific groups of neurons. However, this is complicated by the fact that optogenetic stimulation is nonlinear, more light does not always equal to more spikes, and neurons that are not directly but indirectly stimulated could have a major impact on how networks respond to optogenetic stimulation. To clarify how optogenetic excitation of some neurons alters the network dynamics, we studied the temporal and spatial response of individual neurons and recurrent neural networks. In individual neurons, we find that neurons show a monotonic, saturating rate response to increasing light intensity and a nonmonotonic rate response to increasing pulse frequency. At the network level, we find that Gaussian light beams elicit spatial firing rate responses that are substantially broader than the stimulus profile. In summary, our analysis and our network simulation code allow us to predict the outcome of an optogenetic experiment and to assess whether the observed effects can be attributed to direct or indirect stimulation of neurons.


2002 ◽  
Vol 14 (10) ◽  
pp. 2371-2396 ◽  
Author(s):  
Silvia Scarpetta ◽  
L. Zhaoping ◽  
John Hertz

We introduce a model of generalized Hebbian learning and retrieval in oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. Recent experiments have shown that synaptic plasticity depends on spike timing, especially on synapses from excitatory pyramidal cells, in hippocampus, and in sensory and cerebellar cortex. Here we study how such plasticity can be used to form memories and input representations when the neural dynamics are oscillatory, as is common in the brain (particularly in the hippocampus and olfactory cortex). Learning is assumed to occur in a phase of neural plasticity, in which the network is clamped to external teaching signals. By suitable manipulation of the nonlinearity of the neurons or the oscillation frequencies during learning, the model can be made, in a retrieval phase, either to categorize new inputs or to map them, in a continuous fashion, onto the space spanned by the imprinted patterns. We identify the first of these possibilities with the function of olfactory cortex and the second with the observed response characteristics of place cells in hippocampus. We investigate both kinds of networks analytically and by computer simulations, and we link the models with experimental findings, exploring, in particular, how the spike timing dependence of the synaptic plasticity constrains the computational function of the network and vice versa.


1993 ◽  
Vol 115 (1) ◽  
pp. 133-139 ◽  
Author(s):  
R. Ranganathan ◽  
S. Rakheja ◽  
S. Sankar

Directional dynamics of a B-train tank vehicle is investigated by integrating the three-dimensional vehicle model to the dynamics associated with the movement of free surface of liquid within the partially filled tanks. The motion of the free surface of liquid due to instantaneous tank roll and lateral acceleration is computed assuming steady state fluid flow conditions. The influence of liquid motion on the dynamic response of the rearmost trailer is investigated for both constant and transient steer inputs, assuming constant forward speed. Directional response characteristics of the B-train tank vehicle are compared to those of an equivalent rigid cargo vehicle to demonstrate the destabilizing effects of the liquid movement within the tank vehicle. Directional response characteristics are further discussed for variation in weight density of liquid and thus the fill height, while the axle loads are held constant around maximum permissible values.


1990 ◽  
Vol 148 (1) ◽  
pp. 255-279 ◽  
Author(s):  
MICHAEL R. IBBOTSON ◽  
LESLEY J. GOODMAN

The anatomical projections and directional tuning of four descending interneurones sensitive to wide-field motion over the compound eyes are described. The cells are slow to adapt, resistant to habituation and their responses are dependent on the contrast frequency of the periodic patterns used as stimuli. Two of the cells (DNIV2 and DNIV4) are maximally stimulated by movement around the longitudinal axis of the bee (simulated roll), one (DNII2) by movement around the horizontal axis (simulated pitch) and one (DNVI1) by movement around the vertical axis (simulated yaw). The cells are binocular, their directional response being shaped by the interaction of the inputs from each eye. The cells which respond predominantly to roll (DNIV2 and DNIV4) have their arborizations restricted to the ipsilateral side of the brain and thoracic ganglia, i.e. the side which contains the cell soma. The cell responding to pitch (DNII2) has its arborizations distributed bilaterally, invading similar regions of the neuropile in both sides of the brain and thoracic ganglia. The cell which responds to yaw (DNVI1) has its major dendritic field in the ipsilateral side of the brain and descends into the thoracic ganglia in the contralateral side. The majority of its arborizations in the thoracic ganglia are confined to the contralateral neuropile.


Author(s):  
Xicao Xie ◽  
Jie Wu

The directional logging-while-drilling measurements enable to monitor the distance to formation boundaries and their orientation and facilitate proactive well placement, and thus can provide directionality information useful in detecting physical parameters such as bed boundaries, formation dip and formation azimuth, so the oil and gas recovery can be greatly improved. The characteristics of a kind of electromagnetic wave resistivity logging while drilling (LWD) tool with tilted antennas are computed via the magnetic-current-source dyadic Green’s function for horizontally stratified anisotropic media. The current characteristic at the formation interface of the tilted antennas is compared with that of the axial antenna, and how the LWD tool with tilted antennas to detect the formation interface position and orientation is revealed. The amplitude-attenuation and phase-shift characteristics of LWD tool with tilted antennas are analyzed, and how to design the angle of tilted antenna is presented. The relationship between the emitting frequency and emitting-receiving antenna space parameters is expounded, and the emitting-receiving antenna space parameter suitable for different frequencies is presented. The detection characteristic of the electromagnetic wave measuring instrument is studied. For the highly deviated well formation model, the directional response characteristics of the different relative dip angle isotropic and anisotropic formation are numerically simulated and analyzed. The directional response characteristics of the two kinds of coil arrangement (unilateral arrangement and symmetrical arrangement) are analyzed by numerical simulation, and the solution to reduce or eliminate the influence of the directional response of the isotropy on the directional response is obtained. The conclusions obtained by theoretical analysis and numerical simulation provide a guide for the instrument principle research and application.


1977 ◽  
Vol 6 (2-3) ◽  
pp. 120-123 ◽  
Author(s):  
CHRISTOPHER B. WINKLER ◽  
THOMAS D. GILLESPIE

Sign in / Sign up

Export Citation Format

Share Document