Response Characteristics of Four Wide-Field Motion-Sensitive Descending Interneurones IN Apis Melufera

1990 ◽  
Vol 148 (1) ◽  
pp. 255-279 ◽  
Author(s):  
MICHAEL R. IBBOTSON ◽  
LESLEY J. GOODMAN

The anatomical projections and directional tuning of four descending interneurones sensitive to wide-field motion over the compound eyes are described. The cells are slow to adapt, resistant to habituation and their responses are dependent on the contrast frequency of the periodic patterns used as stimuli. Two of the cells (DNIV2 and DNIV4) are maximally stimulated by movement around the longitudinal axis of the bee (simulated roll), one (DNII2) by movement around the horizontal axis (simulated pitch) and one (DNVI1) by movement around the vertical axis (simulated yaw). The cells are binocular, their directional response being shaped by the interaction of the inputs from each eye. The cells which respond predominantly to roll (DNIV2 and DNIV4) have their arborizations restricted to the ipsilateral side of the brain and thoracic ganglia, i.e. the side which contains the cell soma. The cell responding to pitch (DNII2) has its arborizations distributed bilaterally, invading similar regions of the neuropile in both sides of the brain and thoracic ganglia. The cell which responds to yaw (DNVI1) has its major dendritic field in the ipsilateral side of the brain and descends into the thoracic ganglia in the contralateral side. The majority of its arborizations in the thoracic ganglia are confined to the contralateral neuropile.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Paola Tramonti Fantozzi ◽  
Giulia Lazzarini ◽  
Vincenzo De Cicco ◽  
Angela Briganti ◽  
Serena Argento ◽  
...  

AbstractTrigeminal input exerts acute and chronic effects on the brain, modulating cognitive functions. Here, new data from humans and animals suggest that these effects are caused by trigeminal influences on the Locus Coeruleus (LC). In humans subjects clenching with masseter asymmetric activity, occlusal correction improved cognition, alongside with reductions in pupil size and anisocoria, proxies of LC activity and asymmetry, respectively. Notably, reductions in pupil size at rest on the hypertonic side predicted cognitive improvements. In adult rats, a distal unilateral section of the trigeminal mandibular branch reduced, on the contralateral side, the expression of c-Fos (brainstem) and BDNF (brainstem, hippocampus, frontal cortex). This counterintuitive finding can be explained by the following model: teeth contact perception loss on the lesioned side results in an increased occlusal effort, which enhances afferent inputs from muscle spindles and posterior periodontal receptors, spared by the distal lesion. Such effort leads to a reduced engagement of the intact side, with a corresponding reduction in the afferent inputs to the LC and in c-Fos and BDNF gene expression. In conclusion, acute effects of malocclusion on performance seem mediated by the LC, which could also contribute to the chronic trophic dysfunction induced by loss of trigeminal input.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Linda F Aulmann ◽  
Kira Busch ◽  
Andrea Zegelin ◽  
Thomas Eckey ◽  
Alexander Neumann ◽  
...  

Purpose: With highly portable mobile infrared cameras thermal imaging during acute stroke triage has become possible. The purpose of this pilot study was to evaluate the pattern of superficial facial skin temperature in patients with acute proximal arterial occlusion of the anterior circulation compared to non-ischemic controls. We hypothesize, that temperature dysregulation in stroke with associated thermal pattern may be used to predict presence of proximal vessel occlusion. Methods: In 46 patients suffering from acute occlusion in the anterior circulation (ICA: 17, M1-MCA: 13, M2-MCA: 16) infrared thermal imaging of the face was performed before endovascular treatment. Asymmetric temperature patterns were evaluated visually. Quantitative temperature values were obtained from regions of interest (ROIs) placed symmetrically on the left and right half of on the facial thermal image. Presence and side of vessel occlusion was correlated with temperature measurements. Results: Regional facial asymmetric temperature was readily visible at 0.5°C. Temperature differences ranged from 0.5 to 1.5° C in stroke patients, and <0.5°C in controls. In 16 of 17 patients with ICA occlusion, facial asymmetric temperature was detected (in 13 lower temperatures on ipsilateral side, in 3 on the contralateral side). In 11 of 13 patients with M1-MCA occlusion, facial asymmetric temperature was detected (in 8 lower temperatures on the contralateral side, 3 on the ipsilateral side). In 15 of 16 patients with an occlusion of M2-segment, asymmetric temperature pattern was apparent, however no clear trend with regard. In 16 of 20 controls, no asymmetric temperature pattern >0.5°C was observed. Conclusion: Thermal imaging could serve as a fast point-of-care test to detect asymmetrical pattern in facial temperature as a predictor of proximal vessel occlusion in stroke. However, the current method is prone to imaging artifacts and reliability of detected asymmetry is moderate.


Author(s):  
Vincent de Ville de Goyet ◽  
Yves Duchêne

<p>The Third Bosporus Bridge is a suspendion bridge with a main span length of 1 408 m and a total length of 2 408 m located at the north of Istanbul near the Black Sea.</p><p>The main span is partially suspended at the pylons by stiffening cables and at the main cables with vertical hangers (Fig.1‐2). The deck is 58.8 m wide. But contrary to a classical arrangement, the transversal distance between the vertical hangers, in the suspended zone, is only 13.50 m. Due to this geometrical configuration of the vertical hangers, it was necessary to verify the risk of aeroelastic instabilities of steel segments of the deck during its lifting: risk of a torsional instability around the longitudinal axis but also around the vertical axis. Countermeasures have been proposed and adopted to suppress these risks.</p>


1997 ◽  
Vol 78 (2) ◽  
pp. 960-976 ◽  
Author(s):  
Fredrik Ullén ◽  
Tatiana G. Deliagina ◽  
Grigori N. Orlovsky ◽  
Sten Grillner

Ullén, Fredrik, Tatiana G. Deliagina, Grigori N. Orlovsky, and Sten Grillner. Visual pathways for postural control and negative phototaxis in lamprey. J. Neurophysiol. 78: 960–976, 1997. The functional roles of the major visuo-motor pathways were studied in lamprey. Responses to eye illumination were video-recorded in intact and chronically lesioned animals. Postural deficits during spontaneous swimming were analyzed to elucidate the roles of the lesioned structures for steering and postural control. Eye illumination in intact lampreys evoked the dorsal light response, that is, a roll tilt toward the light, and negative phototaxis, that is a lateral turn away from light, and locomotion. Complete tectum-ablation enhanced both responses. During swimming, a tendency for roll tilts and episodes of vertical upward swimming were seen. The neuronal circuitries for dorsal light response and negative phototaxis are thus essentially extratectal. Responses to eye illumination were abolished by contralateral pretectum-ablation but normal after the corresponding lesion on the ipsilateral side. Contralateral pretectum thus plays an important role for dorsal light response and negative phototaxis. To determine the roles of pretectal efferent pathways for the responses, animals with a midmesencephalichemisection were tested. Noncrossed pretecto-reticular fibers from the ipsilateral pretectum and crossed fibers from the contralateral side were transected. Eye illumination on the lesioned side evoked negative phototaxis but no dorsal light response. Eye illumination on the intact side evoked an enhanced dorsal light response, whereas negative phototaxis was replaced with straight locomotion or positive phototaxis. The crossed pretecto-reticular projection is thus most important for the dorsal light response, whereas the noncrossed projection presumably plays the major role for negative phototaxis. Transection of the ventral rhombencephalic commissure enhanced dorsal light response; negative phototaxis was retained with smaller turning angles than normal. Spontaneous locomotion showed episodes of backward swimming and deficient roll control (tilting tendency). Transections of different spinal pathways were performed immediately caudal to the brain stem. All spinal lesions left dorsal light response in attached state unaffected; this response presumably is mediated by the brain stem. Spinal hemisection impaired all ipsiversive yaw turns; the animals spontaneously rolled to the intact side. Bilateral transection of the lateral columns impaired all yaw turns, whereas roll control and dorsal light response were normal. After transection of the medial spinal cord, yaw turns still could be performed whereas dorsal light response was suppressed or abolished, and a roll tilting tendency during spontaneous locomotion was seen. We conclude that the contralateral optic nerve projection to the pretectal region is necessary and sufficient for negative phototaxis and dorsal light response. The crossed descending pretectal projection is most important for dorsal light response, whereas the noncrossed one is most important for negative phototaxis. In the most rostral spinal cord, fibers for lateral yaw turns travel mainly in the lateral columns, whereas fibers for roll turns travel mainly in the medial spinal cord.


2021 ◽  
Vol 11 (12) ◽  
pp. 1608
Author(s):  
Takehiro Uda ◽  
Noritsugu Kunihiro ◽  
Ryoko Umaba ◽  
Saya Koh ◽  
Toshiyuki Kawashima ◽  
...  

Corpus callosotomy (CC) is one of the options in epilepsy surgeries to palliate patient seizures, and is typically applied for drop attacks. The mechanisms of seizure palliation involve disrupting the propagation of epileptic activity to the contralateral side of the brain. This review article focuses on the surgical aspects of CC. As a variations of CC, anterior two-thirds, posterior one-third, and total callosotomy are described with intraoperative photographs. As less-invasive surgical variations, recent progress in endoscopic CC, and CC without craniotomy, is described. CC remains acceptable under the low prevalence of complications, and surgeons should make the maximum effort to minimize the complication rate.


2018 ◽  
Vol 65 (1) ◽  
pp. 151-162
Author(s):  
Arkadiusz Szarmach ◽  
Mariusz Kaszubowski ◽  
Agnieszka Sabisz ◽  
Andrzej F Frydrychowski ◽  
Grzegorz Halena ◽  
...  

The aim of this study was to assess regional perfusion at baseline and regional cerebrovascular resistance (CVR) to delayed acetazolamide challenge in subjects with chronic carotid artery stenosis.Sixteen patients (ten males) aged 70.94±7.71 with carotid artery stenosis ≥90% on the ipsilateral side and ≤50% on the contralateral side were enrolled into the study. In all patients, two computed tomography perfusion examinations were carried out; the first was performed before acetazolamide administration and the second 60 minutes after injection.The differences between mean values were examined by paired two-sample t-test and alternative nonparametric Wilcoxon’s test. Normality assumption was examined using W Shapiro-Wilk test.The lowest resting-state cerebral blood flow (CBF) was observed in white matter (ipsilateral side: 18.4±6.2; contralateral side: 19.3±6.6) and brainstem (ipsilateral side: 27.8±8.5;  contralateral side: 29.1±10.8). Grey matter (cerebral cortex) resting state CBF was below the normal value for subjects of this age: frontal lobe – ipsilateral side: 30.4±7.0, contralateral side: 33.7±7.1; parietal lobe – ipsilateral side: 36.4±11.3, contralateral side: 42.7±9.9; temporal lobe – ipsilateral side: 32.5±8.6, contralateral side: 39.4±10.8; occipital lobe – ipsilateral side: 24.0±6.0, contralateral side: 26.4±6.6). The highest resting state CBF was observed in the insula (ipsilateral side: 49.2±17.4; contralateral side: 55.3±18.4). A relatively high resting state CBF was also recorded in the thalamus (ipsilateral side: 39.7±16.9; contralateral side: 41.7±14.1) and cerebellum (ipsilateral side: 41.4±12.2; contralateral side: 38.1±11.3). The highest CVR was observed in temporal lobe cortex (ipsilateral side: +27.1%; contralateral side: +26.1%) and cerebellum (ipsilateral side: +27.0%; contralateral side: +34.6%). The lowest CVR was recorded in brain stem (ipsilateral side: +20.2%; contralateral side: +22.2%) and white matter (ipsilateral side: +18.1%; contralateral side: +18.3%). All CBF values were provided in milliliters of blood per minute per 100 g of brain tissue [ml/100g/min]. Resting state circulation in subjects with carotid artery stenosis is low in all analysed structures with the exception of insula and cerebellum. Acetazolamide challenge yields relatively uniform response in both hemispheres in the investigated population.Grey matter is more reactive to acetazolamide challenge than white matter or brainstem.


2002 ◽  
Vol 12 (1) ◽  
pp. 15-23
Author(s):  
Keiko Yasuda ◽  
Hiroaki Fushiki ◽  
Rinnosuke Wada ◽  
Yukio Watanabe

While the stimulation of otolith inputs reduces the duration of postrotatory nystagmus (PRN), there is still room for dialogue about the effect of static tilt on the orientation of PRN. We studied one possible influence of static roll tilt on the spatial orientation of PRN in cats. The animal was rotated about an earth-vertical axis (EVA) at a constant velocity of 100 deg/s with an acceleration and deceleration of 120 deg / s 2 . Within two seconds after stopping EVA rotation, the animal was passively tilted at 45 deg/s about its longitudinal axis by as much as ± 90 deg in steps of 15 deg. Eye movements were measured with magnetic search coils. The angle of the PRN plane and its slow phase eye velocity were measured. The time constant of PRN decreased with an increase in roll tilt. The PRN plane remained earth horizontal within a range of ± 30 deg roll tilt. Beyond this range, the velocity of PRN decreased too rapidly to measure any change in orientation. Our results indicate a spatially limited and temporally short interaction of the semicircular canal and otolith signals in the velocity storage mechanism of cat PRN. Our data, along with previous studies, suggest that different species show different solutions to the problem of the imbalance and spatial disorientation during contradictory stimuli.


1966 ◽  
Vol 45 (2) ◽  
pp. 229-249
Author(s):  
R. DE G. WEEVERS

1. When a single MRO of a caterpillar is stretched at least 32 motor units show clear reflex changes in activity. 2. The great majority of muscles are excited and the latency of the reflex differs only slightly from one muscle to another. The response has both tonic and phasic components which reflect more or less faithfully the magnitudes of the same components in the sensory discharge. 3. Muscles are affected on the contralateral side of the stimulated segment and on the ipsilateral side of adjacent segments. The reflex fields of neighbouring receptors therefore overlap; spatial facilitation produces a disproportionate increase in the overall response when two receptors are stimulated simultaneously. 4. The reflex pathway for muscles innervated by nerve 2 is shown to involve synaptic connexions in the ganglion of the segment anterior to the stimulated receptor and responding muscles. 5. The muscles most strongly excited are those which lie functionally in parallel with a stretched sense organ. It is concluded that a major function of the caterpillar MRO is to mediate a negative feedback reflex tending to stabilize bodily position independent of load.


Development ◽  
1975 ◽  
Vol 33 (3) ◽  
pp. 775-787
Author(s):  
Joan D. Feldman ◽  
R. M. Gaze

Double-nasal and double-temporal compound eyes were constructed in Xenopus embryos at stages 32 and 37/38. A particular half was removed from the host eye anlage and replaced with the opposite half-eye from the contralateral side of a donor embryo. Control operations consisted of removing a half-eye and replacing it with a similar half from the ipsilateral side of the donor embryo. Whereas in control animals, each half-eye projected its fibres to the appropriate half-tectum, in operated animals each half of the compound eye spread its optic teiminals across the entire rostrocaudal extent of the dorsal tectal surface. The area of tectal surface covered by ganglion fibre terminals was similar in operated animals mapped at successive stages of development to that previously observed in normal animals at equivalent stages. Therefore the factors responsible for the extended distribution of fibre terminals from each half of a compound eye must exist at least from mid-tadpole life, and thereafter be continuously present throughout development.


Sign in / Sign up

Export Citation Format

Share Document