2014 ◽  
Vol 778-780 ◽  
pp. 967-970 ◽  
Author(s):  
Donald A. Gajewski ◽  
Sei Hyung Ryu ◽  
Mrinal Das ◽  
Brett Hull ◽  
Jonathan Young ◽  
...  

We present new reliability results on the Cree, Inc., 4H-SiC, DMOSFET devices. The Cree DMOSFETs were developed to meet the demand of next-generation, high-frequency power switching applications, such as: dc-ac inversion, dc-dc conversion, and ac-dc rectification, with continually improving energy efficiency. The Cree Generation 2 DMOSFET process technology is now commercially available with 1200 V and 1700 V ratings. We have performed intrinsic reliability studies to ensure excellent wear-out performance and long field lifetime of the products. We have also performed large sample size qualification reliability acceptance tests to ensure the quality of the manufacturing and packaging processes. These comprehensive reliability studies establish new benchmarks for wide bandgap transistors and demonstrate that Crees MOSFETs meet or exceed all industrial reliability requirements. This achievement facilitates broad market adoption of this disruptive power switch technology.


Author(s):  
Martin von Haartman ◽  
Samia Rahman ◽  
Satyaki Ganguly ◽  
Jai Verma ◽  
Ahmad Umair ◽  
...  

Abstract Resolution of optical fault isolation (FI) and nanoprobing tools needs to keep pace with the device downscaling to be effective for semiconductor process development. In this paper we present and discuss state-of-the-art FI and nanoprobing techniques evaluated on Intel test-chips fabricated on next generation process technology. Promising results were obtained but further improvements are necessary for the 7nm node and beyond.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000216-000222
Author(s):  
Chun-Hsien Chien ◽  
Chien-Chou Chen ◽  
Wen-Liang Yeh ◽  
Wei-Ti Lin ◽  
Cheng-Hui Wu ◽  
...  

Abstract In 1965, Gordon E. Moore, the co-founder of Intel stated that numbers of transistors on a chip will double every 18 months and his theory called the Moore's Law. The law had been the guiding principle of chip design over 50 years. The technology dimension is scaling very aggressively in IC foundry. For example, TSMC announced their 5nm Fin Field-Effect Transistor (FinFET) process technology is optimized for both mobile and high performance computing applications. It is scheduled to start risk production in the second half of 2019.[1] To overview the semiconductor supply chain included IC foundry, wafer bumping, IC carrier, PCB (Printed circuit board) and OSAT (oversea assembly and testing)… etc., the IC carrier and PCB technology dimension scaling are far behind than the IC foundry since many reasons for the traditional industry. The industry needs different kinds of breakthrough approaches for the scaling of via and strip line in next generation interconnection. Traditional organic substrates faces many challenges of warpage, surface roughness and material dimension stability issues for manufacturing and high density I/Os with very fine line interconnections. To breakthrough these challenges, the materials of glass carrier, new photo-imagable dielectric (PID) and advanced equipment were evaluated for the fine line and fine via interconnection. In the papers, there are many PID and non-PID materials were surveyed and compared for fine via (< 10μm) interconnection or low loss of high frequency application. The first candidate was chosen for redistribution layers (RDL) fabrication by using 370mm × 470mm glass panels. Semi additive process (SAP) was used for direct metallization on glass panel with different build-up dielectric materials to form daisy chain test vehicles. The process, fabrication integration and electrical measurement results of daisy chain showed good continuity and electric resistance in the glass panel substrate. The reliability of the thermal cycling test (TCT) and highly accelerated stress test (HAST) were evaluated as well in this study.


1998 ◽  
Vol 37 (Part 1, No. 12B) ◽  
pp. 6669-6674 ◽  
Author(s):  
Jung-Min Sohn ◽  
Byung-Gook Kim ◽  
Sung-Woon Choi ◽  
Jin-Min Kim ◽  
Byung-Cheol Cha ◽  
...  

Author(s):  
Michael W. Patterson ◽  
Charles V. Park

The Energy Policy Act of 2005 (EPAct) charges the Department of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP — a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process downselection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology roadmaps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001507-001526 ◽  
Author(s):  
Seung Wook Yoon ◽  
Yaojian Lin ◽  
Yonggang Jin ◽  
Jerome Teysseyre ◽  
Xavier Baraton ◽  
...  

Current and future demands of mobile/portable electronic systems in terms of performance, power consumption, reliable system at a reasonable price are met by developing advanced/appropriate silicon process technology, innovative packaging solutions with use of chip-package-system co-design, low cost materials, advanced assembly and reliable interconnect technologies. In this article packaging evolution for hand held application is discussed with special focus on next generation chip embedding technology called eWLB in detail. To meet the above said challenges eWLB was developed which offers additional space for routing higher I/O chips on top of Silicon chip area which is not possible in conventional WLP or WLB. It also offers comparatively better electrical, thermal and reliability performance at reduced cost with possibility to address more Moore [decreasing technology nodes with low-k dielectrics in SoC] and more than Moore [heterogeneous integration of chips with different wafer technology as SiP solution in multi die or 3D eWLB approaches]. Currently 1st generation eWLB technology is available in the industry with 200mm and 300mm carrier size. This paper will highlight some of the recent advancements in progress development and mechnical characterization in component level and board level reliaiblity of next generation eWLB technologies of double-side 3D eWLB. Standard JEDEC tests were carried out to investigate component level reliability and both destructive/non-destructive analysis was performed to investigate potential structural defects. Daisychain Test vehicles were prepared and also tested for drop and TcoB (Temperature on Board) reliaiblity in industry standard test conditions. There was significant improvement of characteristic lifetime with thined eWLB in TcoB performance because of its enhanced flexibility of package. And there was study of board level reliabiilty with underfill in SMT for large size eWLB packages. This paper will also present study of package warpage behavior with temperature profile as well as failure analysis with microsturctural observation for comprehensive understanding of mechanical behavior of next generation eWLBs.


Author(s):  
Joachim John ◽  
Victor Prajapati ◽  
Christophe Allebe ◽  
Angel Uruena de Castro ◽  
Jose Luis Hernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document