Next Generation eWLB (Embedded Wafer Level BGA): Advanced 3D SiP Packaging Solution

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001507-001526 ◽  
Author(s):  
Seung Wook Yoon ◽  
Yaojian Lin ◽  
Yonggang Jin ◽  
Jerome Teysseyre ◽  
Xavier Baraton ◽  
...  

Current and future demands of mobile/portable electronic systems in terms of performance, power consumption, reliable system at a reasonable price are met by developing advanced/appropriate silicon process technology, innovative packaging solutions with use of chip-package-system co-design, low cost materials, advanced assembly and reliable interconnect technologies. In this article packaging evolution for hand held application is discussed with special focus on next generation chip embedding technology called eWLB in detail. To meet the above said challenges eWLB was developed which offers additional space for routing higher I/O chips on top of Silicon chip area which is not possible in conventional WLP or WLB. It also offers comparatively better electrical, thermal and reliability performance at reduced cost with possibility to address more Moore [decreasing technology nodes with low-k dielectrics in SoC] and more than Moore [heterogeneous integration of chips with different wafer technology as SiP solution in multi die or 3D eWLB approaches]. Currently 1st generation eWLB technology is available in the industry with 200mm and 300mm carrier size. This paper will highlight some of the recent advancements in progress development and mechnical characterization in component level and board level reliaiblity of next generation eWLB technologies of double-side 3D eWLB. Standard JEDEC tests were carried out to investigate component level reliability and both destructive/non-destructive analysis was performed to investigate potential structural defects. Daisychain Test vehicles were prepared and also tested for drop and TcoB (Temperature on Board) reliaiblity in industry standard test conditions. There was significant improvement of characteristic lifetime with thined eWLB in TcoB performance because of its enhanced flexibility of package. And there was study of board level reliabiilty with underfill in SMT for large size eWLB packages. This paper will also present study of package warpage behavior with temperature profile as well as failure analysis with microsturctural observation for comprehensive understanding of mechanical behavior of next generation eWLBs.

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 1-32
Author(s):  
Senthil Sivaswamy ◽  
Theodore (Ted) G. Tessier ◽  
Tony Curtis ◽  
David Clark ◽  
Kazuhisa Itoi ◽  
...  

Fan-Out Wafer Level Packaging (FO-WLP) technology has been developed in recent years to overcome the limitations of Fan-in WLP (FI-WLP) packages and to add more functionality to WLP. Fan-Out packages expand the WLP market to higher pin count devices and add multiple die System in Package (SiP) capability. In this paper, a novel approach to low cost fan-out packaging based on polyimide flex circuits and wafer level Embedded Die Customization (EDC) is discussed. ChipletT refers to Fan-Out packaging. ChipsetT refers to System in Package developed with WABE (Wafer and Board Level Embedding) technology. WABE technology is based on co-lamination of multi layer polyimide flex wiring and conductive z-axis sintered metal interconnections. Using WABE technology, ultra thin fan-out packages (0.4mm) can be fabricated with lower processing costs, higher throughput and with 3D extendibility. Embedded Die Customization is performed at the wafer level and involves optimization of the die-to-embedding process by using optimized wafer level processing capabilities including polymer processing, copper plating and wafer thinning. Reliability of the ChipletT packages, both component level and board level is evaluated. ChipletT packages show high reliability in component level testing and board level testing (Thermal Cycling and Drop Testing). The thermal performance of ChipletT packages were also evaluated in this study. Thermal resistance parameters θja and θjc were simulated with and without thermal vias for both face up and face down configurations. ChipletT provides a new low cost fan out packaging option with proven component level and board level reliability performance.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001438-001457 ◽  
Author(s):  
Seung Wook Yoon

With reducing form-factor and functional integration of mobile devices, Wafer Level Packaging (WLP) is attractive packaging technology with many advantages in comparison to standard Ball Grid Array (BGA) packages. With the advancement of various fan-out WLP, it is more optimal and promising solution compared to fan-in WLP, because it can offer greater flexibility in design of more IOs, multi-chips, heterogeneous integration and 3D SiP. eWLB (embedded wafer level packaging) is a type of fan-out WLP enabling applications that require smaller form-factor, excellent heat dissipations, thin package profile as it has the potential to evolve in various configurations with proven manufacturing capacity and production yield. This paper discusses the recent advancements of robust reliability performance of large size eWLB. It will also highlight the recent achievement of enhanced component level reliability with advanced dielectric materials. After a parametric study and mechanical simulations, new advanced materials were selected and applied to eWLB. Standard JEDEC tests were carried out to investigate component level reliability of large size (9x9~14x14mm2) test vehicles and both destructive/non-destructive analysis were performed to investigate potential structural defects. Daisychain test vehicles were also tested for drop and TCoB (Temperature Cycle on Board) reliability performance in industry standard test conditions. Besides, this paper will also present a study of package level warpage behaviour with Thermo-Moire measurement.


2012 ◽  
Vol 1427 ◽  
Author(s):  
Hamid Kiumarsi ◽  
Hiroyuki Ito ◽  
Noboru Ishihara ◽  
Kenichi Okada ◽  
Yusuke Uemichi ◽  
...  

ABSTRACTA 60 GHz tandem coupler using offset broadside coupled lines is proposed in a WLP (Wafer Level Packaging) technology. The fabricated coupler has a core chip area of 750 μm × 385 μm (0.288 mm2). The measured results show an insertion loss of 0.44 dB, an amplitude imbalance of 0.03 dB and a phase difference of 87.6° at 60 GHz. Also the measurement shows an insertion loss of less than 0.67 dB, an amplitude imbalance of less than 0.31 dB, a phase error of less than 3.7°, an isolation of more than 29.7 dB and a return loss of more than 27.9 dB at the input ant coupled ports and more than 14.3 dB at the direct and isolated ports over the frequency band of 57-66 GHz, covering 60 GHz band both in Japan and US. To the best of our knowledge the proposed coupler achieves the lowest ever reported insertion loss and amplitude imbalance for a 3-dB coupler on a silicon substrate. With its superior performance and lower cost compared to the CMOS counterparts, the proposed coupler is a suitable candidate for low-cost high-performance millimeter-wave systems.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000729-000750
Author(s):  
Vern Stygar ◽  
Tim Mobley ◽  
Shintarou Takahashi

Glass for use as an Interposers with through vias (TGV) are emerging as the next generation substrates for die level and wafer level packaging substrates. This need is being driven increasing number of interconnects, desire to have a KGD (known good die) at the wafer level package (WLP), high electrical/thermal conductivity vias, and hermeticity between the PWB and the die, while being cost competitive with a TSV passive interposer. These TGV characteristics translate to longer battery life, higher yield at the end user applications, and an optimized WLP solution that not require silicon processing foundries to fabricate a passive interposer. The next generation of communication devices will operate at much higher frequencies to allow video on demand and video vis a vis communication. Coupled with multiple frequencies, to facilitate a phone to work with GSM, CDMA and other communication schemes require multiple filter and low noise amplifiers. This paper will describe work done with Alkali free, copper filled (not plated) hermetic vias that are both low cost and provide engineering design flexibility for the more advance low cost personal handheld devices.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Roland Gooch ◽  
Thomas Schimert

AbstractVacuum packaging of high-performance surface-micromachined uncooled microbolometer detectors and focal-plane arrays (FPAs) for infrared imaging and nonimaging applications, inertial MEMS (microelectromechanical systems) accelerometers and gyroscopes, and rf MEMS resonators is a key issue in the technology development path to low-cost, high-volume MEMS production. In this article, two approaches to vacuum packaging for MEMS will be discussed. The first is component-level vacuum packaging, a die-level approach that involves packaging individual die in a ceramic package using either a silicon or germanium lid. The second approach is wafer-level vacuum packaging, in which the vacuum-packaging process is carried out at the wafer level prior to dicing the wafer into individual die. We focus the discussion of MEMS vacuum packaging on surface-micromachined uncooled amorphous silicon infrared microbolometer detectors and FPAs for which both component-level and wafer-level vacuum packaging have found widespread application and system insertion. We first discuss the requirement for vacuum packaging of uncooled a-Si microbolometers and FPAs. Second, we discuss the details of the component-level and wafer-level vacuum-packaging approaches. Finally, we discuss the system insertion of wafer-level vacuum packaging into the Raytheon 2000AS uncooled infrared imaging camera product line that employs a wafer-level-packaged 160 × 120 pixel a-Si infrared FPA.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002336-002359
Author(s):  
Tony Curtis ◽  
Senthil Sivaswamy ◽  
Ronnie Yazzie ◽  
David Lawhead ◽  
Theodore G. Tessier

The proliferation of Wafer Level Chip Scale Packages (WLCSPs) in portable handheld products has occurred due to the minimalist form factor, high reliability and low cost packaging that they afford. As the demand for WLCSPs has grown exponentially in recent years, the industry has also been coping concurrently with the technical challenges associated with increasing array sizes and more demanding end user reliability requirements. Since handsets are inherently prone to being dropped, they are particularly susceptible to this type of component failure though striking a proper balance of mechanical robustness and thermal cycling performance has remained an ongoing industry goal. Similar to other packages, WLCSPs have transitioned over the past decade from lead-based solder alloys to Lead Free (LF) solders. LF solder connections are especially susceptible to brittle fracture and can result in variations in drop test performance from one bump structure to the next. This paper will provide an overview of process and material add-on strategies that have been shown to considerably improve mechanical robustness for bump structures or bumping applications that are inherently less robust than others. Such supplemental improvements can result in passing Board Level Reliability qualification requirements which may otherwise be elusive or have limited levels of reliability reproducibility.


2003 ◽  
Vol 766 ◽  
Author(s):  
Peter Ramm ◽  
Armin Klumpp ◽  
Reinhard Merkel ◽  
Josef Weber ◽  
Robert Wieland ◽  
...  

AbstractIn the last years strong efforts were made to miniaturize microelectronic systems. Chip scale packages, flip chips and multichip modules are now commonly used in a great variety of products (e. g. mobile phones, hand-held computers and chip cards). Future microelectronic applications require significantly more complex devices with increased functionality and performance. Due to added device content, chip area will also increase. Performance, multi-functionality and reliability of microelectronic systems will be limited mainly by the wiring between the subsystems (so called “wiring crisis”), causing a critical performance bottleneck for future IC generations. 3D System Integration provides a base to overcome these drawbacks. Furthermore, systems with minimum volume and weight as well as reduced power consumption can be realized for portable applications. 3D integrated systems show reduced chip areas and enable optimized partitioning, both which decrease the fabrication cost of the system. An additional benefit is the enabling of minimal interconnection lengths and the elimination of speed-limiting inter-chip interconnects. 3D concepts which take advantage of wafer level processing to avoid increasing package sizes and expensive single component assembling processes have the potential to integrate passive devices resistors, inductors and capacitors into the manufacturing system and provide full advantage for system performance.The ITRS roadmap predicts an increasing demand for systems-on-a-chip (SoC) [1]. Conventional fabrication is based on embedded technologies which are cost intensive. A new low cost fabrication approach for vertical system integration is introduced. The wafer-level 3D SoC technology, optimized to the capability for chip-to-wafer stacking has the potential to replace embedded technologies based on monolithic integration.


2021 ◽  
Author(s):  
Venkataramanan Mahalingam ◽  
Sourav Ghosh ◽  
Rajkumar Jana ◽  
Sagar Ganguli ◽  
Harish Reddy Inta ◽  
...  

The quest for developing next-generation non-precious electrocatalyst is getting aroused in recent times. Herein, we have designed and developed a low cost electrocatalyst by ligand-assisted synthetic strategy in aqueous medium....


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document