A three-dimensional microcellular Line-of-Sight propagation model using UTD wedge diffraction

Author(s):  
Edgar Silva ◽  
Elisson A. D. Lima ◽  
Gilberto A. Carrijo
Optik ◽  
2018 ◽  
Vol 164 ◽  
pp. 362-370
Author(s):  
Shaohui Li ◽  
Xuejin Sun ◽  
Riwei Zhang ◽  
Chuanliang Zhang ◽  
Yongbo Zhou ◽  
...  

2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


Author(s):  
William J Henney ◽  
J A López ◽  
Ma T García-Díaz ◽  
M G Richer

Abstract We carry out a comprehensive kinematic and morphological study of the asymmetrical planetary nebula: NGC 6210, known as the Turtle. The nebula’s spectacularly chaotic appearance has led to proposals that it was shaped by mass transfer in a triple star system. We study the three-dimensional structure and kinematics of its shells, lobes, knots, and haloes by combining radial velocity mapping from multiple long-slit spectra with proper motion measurements from multi-epoch imaging. We find that the nebula has five distinct ejection axes. The first is the axis of the bipolar, wind-blown inner shell, while the second is the axis of the lop-sided, elliptical, fainter, but more massive intermediate shell. A further two axes are bipolar flows that form the point symmetric, high-ionization outer lobes, all with inclinations close to the plane of the sky. The final axis, which is inclined close to the line of sight, traces collimated outflows of low-ionization knots. We detect major changes in outflow directions during the planetary nebula phase, starting at or before the initial ionization of the nebula 3500 years ago. Most notably, the majority of redshifted low-ionization knots have kinematic ages greater than 2000 years, whereas the majority of blueshifted knots have ages younger than 2000 years. Such a sudden and permanent 180-degree flip in the ejection axis at a relatively late stage in the nebular evolution is a challenge to models of planetary nebula formation and shaping.


2021 ◽  
Vol 11 (1) ◽  
pp. 409
Author(s):  
Jaejoong Lee ◽  
Chiho Lee ◽  
Hyeon Hwi Lee ◽  
Kyung Tae Park ◽  
Hyun-Kyo Jung ◽  
...  

A new line-of-sight (LOS) decision algorithm applicable to simulation of electronic warfare (EW) is developed. For accurate simulation, the digital terrain elevation data (DTED) of the region to be analyzed must be reflected in the simulation, and millions of datasets are necessary in the EW environment. In order to obtain real-time results in such an environment, a technology that determines line-of-sight (LOS) quickly and accurately is very important. In this paper, a novel algorithm is introduced for determining LOS that can be applied in an EW environment with three-dimensional (3D) DTED. The proposed method shows superior performance as compared with the simplest point-to-point distance calculation method and it is also 50% faster than the conventional interpolation method. The DTED used in this paper is the data applied as level 0 for the Republic of Korea, and the decision of the LOS at approximately 1.8 million locations viewed by a reconnaissance plane flying 10 km above the ground is determined within 0.026 s.


2000 ◽  
Vol 49 (2) ◽  
pp. 422-427 ◽  
Author(s):  
S. Ichitsubo ◽  
T. Furuno ◽  
T. Taga ◽  
R. Kawasaki

1999 ◽  
Vol 07 (01) ◽  
pp. 15-26 ◽  
Author(s):  
CHI-FANG CHEN ◽  
JANG-JIA LIN ◽  
DING LEE

A set of experiments were performed in the offshore area off the coasts of Taiwan and three-dimensional (3-D) measurements recorded. The 3-D effect on underwater propagation due to azimuthal variation of bottom topography is studied for the offshore regions southwest of Taiwan, where submarine canyons exist. A 3-D acoustic propagation model, FOR3D, is used to detect the 3-D effect. Computational results show that the 3-D effect is more prominent along the axis of the canyon than across it. Calculations show a very good agreement with field data, which indicate that the 3-D effect exists in this realistic ocean environment.


2011 ◽  
Vol 317-319 ◽  
pp. 727-733
Author(s):  
Shuang Chun Peng ◽  
Liang Pan ◽  
Tian Jiang Hu ◽  
Lin Cheng Shen

A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.


Sign in / Sign up

Export Citation Format

Share Document