The study of the interfacial reaction between Sn/Ni/Cu substrates of PTH components and Sn-xAg-xCu solder pastes after performing Wave-Soldering process

Author(s):  
Lee Chieng-Hong ◽  
Tsai Hui-Chuan ◽  
Liao Meng-Chieh
2015 ◽  
Vol 45 (1) ◽  
pp. 154-163 ◽  
Author(s):  
M.A.A. Mohd Salleh ◽  
S.D. McDonald ◽  
C.M. Gourlay ◽  
S.A. Belyakov ◽  
H. Yasuda ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Violeta Carvalho ◽  
Bruno Arcipreste ◽  
Delfim Soares ◽  
Luís Ribas ◽  
Nelson Rodrigues ◽  
...  

Purpose This study aims to determine the minimum force required to pull out a surface mount component in printed circuit boards (PCBs) during the wave soldering process through both experimental and numerical procedures. Design/methodology/approach An efficient experimental technique was proposed to determine the minimum force required to pull out a surface mount component in PCBs during the wave soldering process. Findings The results showed that the pullout force is approximately 0.4 N. Comparing this value with the simulated force exerted by the solder wave on the component ( ≅ 0.001158 N), it can be concluded that the solder wave does not exert sufficient force to remove a component. Originality/value This study provides a deep understanding of the wave soldering process regarding the component pullout, a critical issue that usually occurs in the microelectronics industry during this soldering process. By applying both accurate experimental and numerical approaches, this study showed that more tests are needed to evaluate the main cause of this problem, as well as new insights were provided into the depositing process of glue dots on PCBs.


2017 ◽  
Vol 29 (3) ◽  
pp. 133-143 ◽  
Author(s):  
Kamila Piotrowska ◽  
Morten Stendahl Jellesen ◽  
Rajan Ambat

Purpose The aim of this work is to investigate the decomposition behaviour of the activator species commonly used in the wave solder no-clean flux systems and to estimate the residue amount left after subjecting the samples to simulated wave soldering conditions. Design/methodology/approach Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base titration method as a function of temperature, time of exposure and the substrate material used. Findings The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL-malic). The decomposition patterns of solder flux activators depend on their chemical nature, time of heat exposure and substrate materials. Evaporation of the residue from the surface of different materials (laminate with solder mask, copper surface or glass surface) was found to be more pronounced for succinic-based solutions at highest test temperatures than for adipic acid. Less left residue was found on the laminate surface with solder mask (∼5-20 per cent of initial amount at 350°C) and poorest acid evaporation was noted for glass substrates (∼15-90 per cent). Practical implications The findings are attributed to the chemistry of WOAs typically used as solder flux activators. The results show the importance WOA type in relation to its melting/boiling points and the impact on the residual amount of contamination left after soldering process. Originality/value The results show that the evaporation of the flux residues takes place only at significantly high temperatures and longer exposure times are needed compared to the temperature range used for the wave soldering process. The extended time of thermal treatment and careful choice of fluxing technology would ensure obtaining more climatically reliable product.


2015 ◽  
Vol 69 (3) ◽  
pp. 295-310
Author(s):  
M. S. Abdul Aziz ◽  
M. Z. Abdullah ◽  
C. Y. Khor ◽  
A. Jalar ◽  
F. Che Ani ◽  
...  

Author(s):  
Sunil Gopakumar ◽  
Francois Billaut ◽  
Eric Fremd ◽  
Manthos Economou

Lead free solders are being increasingly used in the electronic industry. While most of the electronic products, in terms of volume, are already built lead free, sectors of the industry including high end servers, networking and telecommunications are covered by “lead in solder” exemptions. It is unknown at this point how long these exemptions will last. In addition, many components such as memories have started appearing only in the Pb-free version. As a result, the industry has been pushed to either adopt a mixed assembly process or to transition early to a full Pb-free process. Even though numerous papers have outlined the successful implementation of a Pb-free process, few of them have actually looked at complex high-end multilayer boards in its entirety. This paper focuses on the issues involved in developing an acceptable Pb-free process window for thick, multilayer boards for SMT, Wave soldering, Rework and Press-fit operations. A laminate capable of withstanding Pb-free soldering temperatures was used to construct a 125-mil thick multilayer board with 18 layers which included 8 ground and 10 signal planes. This experiment utilized two popular Pb-free finishes commonly used in the industry: Immersion Silver and high temperature Organic Solderability Preservative (OSP). The widespread SAC 305 alloy with a composition of Sn3.0Ag0.5Cu was used for both SMT and wave soldering. Three sets of assemblies were built: Pb-free, Mixed and Sn/Pb. The mixed assembly mostly used Pb-free components with Sn/Pb solder paste. The impact of increased soldering temperatures on the board, components and reliability of the product were also studied as a part of this research endeavor. Board level reliability tests were conducted by subjecting the boards from 0°C to 100°C Air-to-Air thermal cycling as well as mechanical shock and vibration tests. A suite of reliability and destructive physical analysis (DPA) tests were carried out to establish the quality of the soldering using the eutectic Sn/Pb assembly as the baseline. The study compared the cycling performance of the three sets of assemblies and also looked at the potential impacts of moving to mixed assemblies. Results indicated a reduced process window for Pb-free, especially for the Pb-free wave soldering process due to reduced wetting of the plated through hole barrels as compared to Sn/Pb wave soldering process. The thermal cycling performance of the three sets of assemblies was found to be equivalent after 6000 cycles.


2011 ◽  
Vol 11 (1) ◽  
pp. 214-220 ◽  
Author(s):  
Mika Liukkonen ◽  
Elina Havia ◽  
Hannu Leinonen ◽  
Yrjö Hiltunen

Sign in / Sign up

Export Citation Format

Share Document