Optimising the wave soldering process for lead free solders

Author(s):  
S. Stoyanov ◽  
C. Bailey ◽  
N. Saxena ◽  
S. Adams
Author(s):  
Mohammad Faizan ◽  
Guo-X. Wang

Soldering has become an indispensable joining process in the electronic packaging industry. The industry is aiming for the use of environment friendly lead-free solders. All the lead-free solders are high tin-containing alloys. During the soldering process, an intense interaction of metallization on PCB and tin from the solder occurs at the metallization/solder interface. Intermetallic compound (IMC) is formed at the interface and subsequently PCB bond-metal (substrate) is dissolved into the molten solder. In the present study the terms bond-metal and substrate will be used interchangeably and the term 'substrate' refers to the top layer of the PCB which comes in contact with the molten solder during soldering reaction. Thickness of the intermetallic phase formed at the joint interface and amount of substrate lost is critical in achieving reliable solder joints. During the wet phase of soldering process, the IMC does not grow as layered structure; rather it takes the shape of scallops. The growth of scalloped IMC during the solder/substrate interaction entails complicated physics. Understanding of the actual kinetics involved in the formation of IMC phase is important in controlling the process to achieve desired results. This paper presents theoretical analysis of the kinetics involved in the formation of the scalloped intermetallic phase. The intermetallic phase growth is experimentally investigated to support the underlying kinetics of the process. Numerical model has been suggested to translate the physics of the process. The model is based on the basic mass diffusion equations and can predict the substrate dissolution and IMC thickness as a function of soldering time.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000251-000257
Author(s):  
Steven Grabey ◽  
Samson Shahbazi ◽  
Sarah Groman ◽  
Catherine Munoz

An increased interest in low temperature polymer thick film products has become apparent due to the rise of the printed electronics market. The specifications for these products are becoming more demanding with expectations that the low temperature products should perform at a level that is typically reserved for their high temperature counterparts; including solderability with lead free solders, high reliability and strong adhesion. Traditionally, it has only been possible to use leaded solders for soldering to polymer based thick film conductors. Over the last 15 years environmental concerns and legislation have pushed the industry towards a lead free approach. The shift to lead free solders, while beneficial, provides new challenges during processing. The high temperatures required for a lead-free soldering process yield a naturally harsher environment for polymer thick film pastes. In the past these conditions have proven too harsh for the pastes to survive. The polymer thick film discussed in this document aims to address some of these concerns for a highly reliable and easy to process polymer thick film paste. Due to the poor leaching characteristics of polymer thick films, at elevated temperatures, the predecessors of this paste typically soldered at low temperatures with leaded solders. The goal of this paper is to present a low temperature paste that is compatible with a variety of substrates and readily accepts lead-free solder. This paper will discuss a newly formulated low temperature curing (150°C – 200°C) RoHS and REACH compliant paste that shows excellent solderability with SAC305 solder. The paste was evaluated using a dip soldering method at 235°C–250°C on a variety of substrates. The data presented includes solder acceptance, adhesion data, thermal analysis and SEM analysis.


Author(s):  
M. Faizan ◽  
R. A. McCoy ◽  
D. C. Lin ◽  
G.-X. Wang

Copper dissolution and intermetallic compound (IMC) formation during reflow of soldered joints are critical issues for joint reliability. Most of studies in the literature aimed at the coarsening and growth of the IMC layer of the soldered joints during service and only limited data is available during soldering process. This is particularly true for lead-free solders, which have attracted the attention of researchers just recently. This paper presents an experimental study of copper dissolution and IMC growth of lead-free solders during the reflow process. Solder buttons of either Sn or Sn-3.5wt%Ag were reflowed over a copper (99.9% pure) substrate for various reflow time periods ranging from 10 seconds to 10 minutes. Four reflow temperatures were selected, 232°C, 250°C, 275°C and 300°C for pure tin and 221°C, 250°C, 275°C and 300°C for Sn-3.5%Ag respectively. The average thickness of the grown IMC layer and the amount of copper dissolved during reflow were determined using the images obtained from the metallurgical microscope. The kinetics of IMC growth and Cu dissolution were then quantified and the estimated kinetics parameters can be used to determine the copper dissolution and IMC layer thickness during reflow soldering.


Author(s):  
Sunil Gopakumar ◽  
Francois Billaut ◽  
Eric Fremd ◽  
Manthos Economou

Lead free solders are being increasingly used in the electronic industry. While most of the electronic products, in terms of volume, are already built lead free, sectors of the industry including high end servers, networking and telecommunications are covered by “lead in solder” exemptions. It is unknown at this point how long these exemptions will last. In addition, many components such as memories have started appearing only in the Pb-free version. As a result, the industry has been pushed to either adopt a mixed assembly process or to transition early to a full Pb-free process. Even though numerous papers have outlined the successful implementation of a Pb-free process, few of them have actually looked at complex high-end multilayer boards in its entirety. This paper focuses on the issues involved in developing an acceptable Pb-free process window for thick, multilayer boards for SMT, Wave soldering, Rework and Press-fit operations. A laminate capable of withstanding Pb-free soldering temperatures was used to construct a 125-mil thick multilayer board with 18 layers which included 8 ground and 10 signal planes. This experiment utilized two popular Pb-free finishes commonly used in the industry: Immersion Silver and high temperature Organic Solderability Preservative (OSP). The widespread SAC 305 alloy with a composition of Sn3.0Ag0.5Cu was used for both SMT and wave soldering. Three sets of assemblies were built: Pb-free, Mixed and Sn/Pb. The mixed assembly mostly used Pb-free components with Sn/Pb solder paste. The impact of increased soldering temperatures on the board, components and reliability of the product were also studied as a part of this research endeavor. Board level reliability tests were conducted by subjecting the boards from 0°C to 100°C Air-to-Air thermal cycling as well as mechanical shock and vibration tests. A suite of reliability and destructive physical analysis (DPA) tests were carried out to establish the quality of the soldering using the eutectic Sn/Pb assembly as the baseline. The study compared the cycling performance of the three sets of assemblies and also looked at the potential impacts of moving to mixed assemblies. Results indicated a reduced process window for Pb-free, especially for the Pb-free wave soldering process due to reduced wetting of the plated through hole barrels as compared to Sn/Pb wave soldering process. The thermal cycling performance of the three sets of assemblies was found to be equivalent after 6000 cycles.


2015 ◽  
Vol 60 (2) ◽  
pp. 1511-1515 ◽  
Author(s):  
E. Nagy ◽  
F. Kristaly ◽  
A. Gyenes ◽  
Z. Gacsi

Abstract Interfacial intermetallic compounds (IMC) play an important role in Sn-Cu lead-free soldering. The size and morphology of the intermetallic compounds formed between the lead-free solder and the Cu substrate have a significant effect on the mechanical strength of the solder joint. In the soldering process of Sn-Cu alloys, Cu6Sn5 intermetallic compounds are formed. The complex structural behaviour of Cu6Sn5 IMC is temperature- and composition-dependent and it is long since subject to scientific research. The Cu6Sn5 phase basically exists in two crystal structures: hexagonal η-Cu6Sn5 (at temperatures above 186°C) and monoclinic η’-Cu6Sn5 (at lower temperatures). In the presence of Ni in the solder, the η-η’ transformation does not occur, therefore, the η-Cu6Sn5 phase remains stable. In this study the role of Ni in the (Cu,Ni)6Sn5 intermetallic compound in Sn-Cu lead-free solders was examined. Sn-Cu alloys with different Cu content (0.5 to 1 mass%) were modified through Ni addition. The morphology of the intermetallic compounds of the modified Sn-Cu alloys was investigated by optical microscopy (OM) and scanning electron microscopy (SEM), the IMC phases were examined with X-ray diffraction method (XRD).


2002 ◽  
Vol 25 (4) ◽  
pp. 289-299 ◽  
Author(s):  
M. Arra ◽  
D. Shangguan ◽  
S. Yi ◽  
R. Thalhammer ◽  
H. Fockenberger

Sign in / Sign up

Export Citation Format

Share Document