Ultrathin Protective Overcoats on Hard Magnetic Disks

Author(s):  
E.V. Anoikin ◽  
G.S. Ng ◽  
M.M. Yang ◽  
J.L. Chao ◽  
D.W. Brown
1998 ◽  
Vol 16 (3) ◽  
pp. 1741-1744 ◽  
Author(s):  
E. V. Anoikin ◽  
M. M. Yang ◽  
J. L. Chao ◽  
J. R. Elings ◽  
D. W. Brown

1996 ◽  
Vol 32 (5) ◽  
pp. 3699-3701 ◽  
Author(s):  
C. Gao ◽  
Y.C. Lee ◽  
J. Chao ◽  
M. Russak
Keyword(s):  

Author(s):  
V N Koinkar ◽  
B Bhushan

For long durability of magnetic media and head sliders, protective overcoats of hydrogenated amorphous carbon (a-C:H) are generally used. In this study, microtribological studies of hydrogenated amorphous carbon coatings deposited on a single-crystal silicon using three different deposition techniques—sputtering, ion beam and cathodic arc—were studied using atomic force/friction force microscopy (AFM/FFM). Roughnesses of all coatings at two scan sizes of 1 μm × 1 μm and 10 μm × 10 μm are comparable. Surface topography of sputtered carbon coating shows some particulates on the surface. Cathodic arc carbon coating exhibits the lowest coefficient of friction value followed by ion beam and sputtered carbon coatings. Microscratch and wear resistance and nanohardness of cathodic arc carbon coating are superior to those of ion beam and sputtered carbon coatings. Cathodic arc deposited carbon coatings are potential candidates for magnetic disks and heads.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (10) ◽  
pp. 41-48 ◽  
Author(s):  
H.S. Kong ◽  
M.F. Ashby

Friction is often a nuisance, but it can be useful too. Brakes, clutches, and tires rely on it, of course, though the inevitable fractional heat remains a problem. Other applications use frictional heat: friction cutting and welding, skiing, skating, and curling. The damage to magnetic disks caused by head-disk contact and the striking of matches are also examples.This article illustrates a framework where the thermal aspects of friction can be analyzed in an informative way. It uses a unified approach to the calculation of flash and bulk heating, and a helpful diagram—the frictional temperature map—to display the results. The method is approximate, but the approximations have been carefully chosen and calibrated to give precision adequate to most tasks, and the gain in simplicity is great.The symbols used in this article are defined in Table I.When two contacting solids 1 and 2, pressed together by a normal force F, slide at a relative velocity ν and with coefficient of friction ü, heat is generated at the surface where they meet. The heat generated, q, per unit of nominal contact area, An, per second isThe heat flows into the two solids, partitioned between them in a way that depends on their geometry and thermal properties. Figure 1 shows one geometry commonly used for laboratory tests: the pin-on-disk configuration. The pin is identified by the subscript 1, the disk by subscript 2. Solid 1 can have properties which differ from those of solid 2.


2011 ◽  
Vol 6 (1) ◽  
pp. 40-44
Author(s):  
Hiroshi Tani ◽  
Masami Kubota ◽  
Masayuki Kanda ◽  
Motohiro Terao ◽  
Norio Tagawa

Sign in / Sign up

Export Citation Format

Share Document