Photonic-crystal-based InGaAs photodetector connected to load resistor for receiver-less light-to-voltage conversion on chip

Author(s):  
Kengo Nozaki ◽  
Shinji Matsuo ◽  
Koji Takeda ◽  
Tomonari Sato ◽  
Takuro Fujii ◽  
...  
Optica ◽  
2016 ◽  
Vol 3 (5) ◽  
pp. 483 ◽  
Author(s):  
Kengo Nozaki ◽  
Shinji Matsuo ◽  
Takuro Fujii ◽  
Koji Takeda ◽  
Masaaki Ono ◽  
...  

2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2011 ◽  
Vol 36 (6) ◽  
pp. 984 ◽  
Author(s):  
Wei-Cheng Lai ◽  
Swapnajit Chakravarty ◽  
Xiaolong Wang ◽  
Cheyun Lin ◽  
Ray T. Chen

2017 ◽  
Vol 25 (26) ◽  
pp. 32919 ◽  
Author(s):  
Hyunho Jung ◽  
Myungjae Lee ◽  
Changhyun Han ◽  
Yeonsang Park ◽  
Kyung-Sang Cho ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1506
Author(s):  
Hongyi Yuan ◽  
Zhouhui Liu ◽  
Maoliang Wei ◽  
Hongtao Lin ◽  
Xiaoyong Hu ◽  
...  

The topological nanophotonic wavelength router, which can steer light with different wavelength signals into different topological channels, plays a key role in optical information processing. However, no effective method has been found to realize such a topological nanophotonic device. Here, an on-chip topological nanophotonic wavelength router working in an optical telecom band is designed based on a topology optimization algorithm and experimentally demonstrated. Valley photonic crystal is used to provide a topological state in the optical telecom band. The measured topological wavelength router has narrow signal peaks and is easy for integration. This work offers an efficient scheme for the realization of topological devices and lays a foundation for the future application of topological photonics.


2020 ◽  
Vol 10 (20) ◽  
pp. 7080
Author(s):  
Ji Xia ◽  
Qifeng Qiao ◽  
Guangcan Zhou ◽  
Fook Siong Chau ◽  
Guangya Zhou

A new class of hybrid systems that couple optical and mechanical nanoscale devices is under development. According to their interaction concepts, two groups of opto-mechanical systems are summarized as mechanically tunable and radiation pressure-driven optical resonators. On account of their high-quality factors and small mode volumes as well as good on-chip integrability with waveguides/circuits, photonic crystal (PhC) cavities have attracted great attention in sensing applications. Benefitting from the opto-mechanical interaction, a PhC cavity integrated opto-mechanical system provides an attractive platform for ultrasensitive sensors to detect displacement, mass, force, and acceleration. In this review, we introduce basic physical concepts of opto-mechanical PhC system and describe typical experimental systems for sensing applications. Opto-mechanical interaction-based PhC cavities offer unprecedented opportunities to develop lab-on-a-chip devices and witness a promising prospect to further manipulate light propagation in the nanophotonics.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. Xiong ◽  
C. Forsythe ◽  
M. Jung ◽  
A. S. McLeod ◽  
S. S. Sunku ◽  
...  

Abstract Photonic crystals are commonly implemented in media with periodically varying optical properties. Photonic crystals enable exquisite control of light propagation in integrated optical circuits, and also emulate advanced physical concepts. However, common photonic crystals are unfit for in-operando on/off controls. We overcome this limitation and demonstrate a broadly tunable two-dimensional photonic crystal for surface plasmon polaritons. Our platform consists of a continuous graphene monolayer integrated in a back-gated platform with nano-structured gate insulators. Infrared nano-imaging reveals the formation of a photonic bandgap and strong modulation of the local plasmonic density of states that can be turned on/off or gradually tuned by the applied gate voltage. We also implement an artificial domain wall which supports highly confined one-dimensional plasmonic modes. Our electrostatically-tunable photonic crystals are derived from standard metal oxide semiconductor field effect transistor technology and pave a way for practical on-chip light manipulation.


Sign in / Sign up

Export Citation Format

Share Document