A Cost-Effective Dual Bus Current Measurement Scheme for Current Control of Three-phase Switched Reluctance Motors

Author(s):  
Nasir Ali ◽  
Qiang Gao ◽  
Ke Ma
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


This manuscript proposes a comparative analysis of BLDC motor performance at various ratings. The BLDC motor may act as a replacement for conventional engines such as the Brushed DC motor, the induction motor, the switched reluctance motors, etc. Because of the BLDC motor's overweight merits, modeling is performed to improve system performance. The torque feature of BLDC motor plays an extremely significant aspect in the fabrication of the BLDC motor drive device, so it is crucial to approximation the exact torque value that is calculated by the simulation of the model proposed in MATLAB software. In the MATLAB / Simulink setting, different ratings of BLDC motor are simulated after the creation of the straightforward analytical model of the three-phase BLDC motor with counter electromotive force trapezoidal waveforms. Based on the review, a comparative examination of each valued engine outcome is displayed in the MATLAB environment's Graphical User Interface.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 117
Author(s):  
Alejandra de la Guerra ◽  
Victor M. Jimenez-Mondragon ◽  
Lizeth Torres ◽  
Rafael Escarela-Perez ◽  
Juan C. Olivares-Galvan

This article introduces an on-line fault diagnosis (FD) system to detect and recognize open-phase faults in switched reluctance motors (SRMs). Both tasks, detection and recognition, are based on functions built with the same information but from different sources. Specifically, these functions are constructed from bus current measurement provided by a sensor and from the estimate of such a current provided by an extended Kalman filter (EKF) that performs the estimation from only rotor angular position measurements. In short, the FD system only requires two measurements for employment: bus current and angular position. In order to show its efficacy, results from numerical simulations (performed in a virtual test bench) are presented. Specifically, these simulations involve the dynamics of the SRM, including the magnetic phenomena caused by the analyzed faults. The motor dynamics were obtained with finite element simulations, which guarantee results close to the actual ones.


2010 ◽  
Vol 173 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Hiroki Ishikawa ◽  
Ryoko Komaki ◽  
Haruo Naitoh ◽  
Akira Yamaba ◽  
Hiroki Katoh

Sign in / Sign up

Export Citation Format

Share Document