Quantitative Evaluation of Carrier Distribution in Silicon Solar Cell Using Scanning Nonlinear Dielectric Microscopy

Author(s):  
Kotaro Hirose ◽  
Katsuto Tanahashi ◽  
Hidetaka Takato ◽  
Yasuo Cho
2018 ◽  
Author(s):  
Kotaro Hirose ◽  
Yasuo Cho ◽  
Katsuto Tanahashi ◽  
Hidetaka Takato

Abstract The carrier distribution in solar cell is important evaluation target. Scanning nonlinear dielectric microscopy is applied to the cross section of phosphorus implanted emitter in monocrystalline silicon solar cell and visualizes the carrier distribution quantitatively. The effective diffusivities of phosphorus are estimated from the experimental results. Then, the three-dimensional carrier distribution is simulated. The experimental and simulation results show good correlation.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Tchouadep Guy Serge ◽  
Zouma Bernard ◽  
Korgo Bruno ◽  
Soro Boubacar ◽  
Savadogo Mahamadi ◽  
...  

The aim of this work is to study the behaviour of a silicon solar cell under the irradiation of different fluences of high-energy proton radiation (10 MeV) and under constant multispectral illumination. Many theoretical et experimental studies of the effect of irradiation (proton, gamma, electron, etc.) on solar cells have been carried out. These studies point out the effect of irradiation on the behaviour of the solar cell electrical parameters but do not explain the causes of these effects. In our study, we explain fundamentally the causes of the effects of the irradiation on the solar cells. Taking into account the empirical formula of diffusion length under the effect of high-energy particle irradiation, we established new expressions of continuity equation, photocurrent density, photovoltage, and dynamic junction velocity. Based on these equations, we studied the behaviour of some electronic and electrical parameters under proton radiation. Theoretical results showed that the defects created by the irradiation change the carrier distribution and the carrier dynamic in the bulk of the base and then influence the solar cell electrical parameters (short-circuit current, open-circuit voltage, conversion efficiency). It appears also in this study that, at low fluence, junction dynamic velocity decreases due to the presence of tunnel defects. Obtained results could lead to improve the quality of the junction of a silicon solar cell.


Author(s):  
Jun Hirota ◽  
Ken Hoshino ◽  
Tsukasa Nakai ◽  
Kohei Yamasue ◽  
Yasuo Cho

Abstract In this paper, the authors report their successful attempt to acquire the scanning nonlinear dielectric microscopy (SNDM) signals around the floating gate and channel structures of the 3D Flash memory device, utilizing the custom-built SNDM tool with a super-sharp diamond tip. The report includes details of the SNDM measurement and process involved in sample preparation. With the super-sharp diamond tips with radius of less than 5 nm to achieve the supreme spatial resolution, the authors successfully obtained the SNDM signals of floating gate in high contrast to the background in the selected areas. They deduced the minimum spatial resolution and seized a clear evidence that the diffusion length differences of the n-type impurity among the channels are less than 21 nm. Thus, they concluded that SNDM is one of the most powerful analytical techniques to evaluate the carrier distribution in the superfine three dimensionally structured memory devices.


Sign in / Sign up

Export Citation Format

Share Document