Motion planning for autonomous vehicles in highly constrained urban environments

Author(s):  
Dennis Fassbender ◽  
Benjamin C. Heinrich ◽  
Hans-Joachim Wuensche
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3755
Author(s):  
Juan Medina-Lee ◽  
Antonio Artuñedo ◽  
Jorge Godoy ◽  
Jorge Villagra

Safe and adaptable motion planning for autonomous vehicles remains an open problem in urban environments, where the variability of situations and behaviors may become intractable using rule-based approaches. This work proposes a use-case-independent motion planning algorithm that generates a set of possible trajectories and selects the best of them according to a merit function that combines longitudinal comfort, lateral comfort, safety and utility criteria. The system was tested in urban scenarios on simulated and real environments, and the results show that different driving styles can be achieved according to the priorities set in the merit function, always meeting safety and comfort parameters imposed by design.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4236
Author(s):  
Woosik Lee ◽  
Hyojoo Cho ◽  
Seungho Hyeong ◽  
Woojin Chung

Autonomous navigation technology is used in various applications, such as agricultural robots and autonomous vehicles. The key technology for autonomous navigation is ego-motion estimation, which uses various sensors. Wheel encoders and global navigation satellite systems (GNSSs) are widely used in localization for autonomous vehicles, and there are a few quantitative strategies for handling the information obtained through their sensors. In many cases, the modeling of uncertainty and sensor fusion depends on the experience of the researchers. In this study, we address the problem of quantitatively modeling uncertainty in the accumulated GNSS and in wheel encoder data accumulated in anonymous urban environments, collected using vehicles. We also address the problem of utilizing that data in ego-motion estimation. There are seven factors that determine the magnitude of the uncertainty of a GNSS sensor. Because it is impossible to measure each of these factors, in this study, the uncertainty of the GNSS sensor is expressed through three variables, and the exact uncertainty is calculated. Using the proposed method, the uncertainty of the sensor is quantitatively modeled and robust localization is performed in a real environment. The approach is validated through experiments in urban environments.


Author(s):  
J. Schachtschneider ◽  
C. Brenner

Abstract. The development of automated and autonomous vehicles requires highly accurate long-term maps of the environment. Urban areas contain a large number of dynamic objects which change over time. Since a permanent observation of the environment is impossible and there will always be a first time visit of an unknown or changed area, a map of an urban environment needs to model such dynamics.In this work, we use LiDAR point clouds from a large long term measurement campaign to investigate temporal changes. The data set was recorded along a 20 km route in Hannover, Germany with a Mobile Mapping System over a period of one year in bi-weekly measurements. The data set covers a variety of different urban objects and areas, weather conditions and seasons. Based on this data set, we show how scene and seasonal effects influence the measurement likelihood, and that multi-temporal maps lead to the best positioning results.


Sign in / Sign up

Export Citation Format

Share Document