Resultant Radius of Curvature of Stylet-and-Tube Steerable Needles Based on the Mechanical Properties of the Soft Tissue, and the Needle

Author(s):  
Fan Yang ◽  
Mahdieh Babaiasl ◽  
Yao Chen ◽  
Jow-Lian Ding ◽  
John P. Swensen
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 14599-14607
Author(s):  
Jianan Wu ◽  
Zhihui Qian ◽  
Ruixia Xu ◽  
Jing Liu ◽  
Luquan Ren ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


2022 ◽  
Author(s):  
Katarína Kacvinská ◽  
Martina Trávničková ◽  
Lucy Vojtová ◽  
Petr Poláček ◽  
Jana Dorazilová ◽  
...  

Abstract This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.


2019 ◽  
Vol 43 (3) ◽  
pp. 189-202
Author(s):  
Supaporn Sangkert ◽  
Suttatip Kamolmatyakul ◽  
Jirut Meesane

Soft tissue defects in the oral maxillofacial area are critical problems for many patients and, in some cases, patients require an operation coupled with a performance scaffold substitution. In this research, mimicked anatomical scaffolds were constructed using gelatin- and chitosan-coated woven silk fibroin fabric. The morphologies, crystals, and structures were observed and then characterized using scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. Physical performance was evaluated from the swelling behavior, mechanical properties, and biodegradation, while the biological performance was tested with fibroblasts and keratinocytes, after which cell proliferation, viability, and histology were evaluated. The results revealed that a coated woven silk fibroin fabric displayed a crystal structure of silk fibroin with amorphous gelatin and chitosan layers. Also, the coated fabrics contained residual water within their structure. The physical performance of the coated woven silk fibroin fabric with gelatin showed suitable swelling behavior and mechanical properties along with acceptable biodegradation for insertion at a defect site. The biological performances including cell proliferation, viability, and histology were suitable for soft tissue reconstruction at the defect sites. Finally, the results demonstrated that mimicked anatomical scaffolds based on a gelatin layer on woven silk fibroin fabric had the functionality that was promising for soft tissue construction in oral maxillofacial defect.


Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


2019 ◽  
Vol 69 ◽  
pp. 127-140 ◽  
Author(s):  
Alekya B. ◽  
Sanjay Rao ◽  
Hardik J. Pandya

Author(s):  
Ming Jia ◽  
Jean W. Zu ◽  
Alireza Hariri

Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. The experimental results show that TRID is a reliable device for in-vivo measurements of soft tissue mechanical properties.


Author(s):  
Kazuhiro FUJISAKI ◽  
Keiichiro TANAKA ◽  
Takeshi MORIWAKI ◽  
Kazuhiko SASAGAWA

Sign in / Sign up

Export Citation Format

Share Document