Local data collection in geographic routing for wireless sensor networks

Author(s):  
Euisin Lee ◽  
Soochang Park ◽  
Fucai Yu ◽  
Taehee Kim ◽  
Sang-Ha Kim
Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 196 ◽  
Author(s):  
Xing Hu ◽  
Linhua Ma ◽  
Yongqiang Ding ◽  
Jin Xu ◽  
Yan Li ◽  
...  

The geographic routing protocol only requires the location information of local nodes for routing decisions, and is considered very efficient in multi-hop wireless sensor networks. However, in dynamic wireless sensor networks, it increases the routing overhead while obtaining the location information of destination nodes by using a location server algorithm. In addition, the routing void problem and location inaccuracy problem also occur in geographic routing. To solve these problems, a novel fuzzy logic-based geographic routing protocol (FLGR) is proposed. The selection criteria and parameters for the assessment of the next forwarding node are also proposed. In FLGR protocol, the next forward node can be selected based on the fuzzy location region of the destination node. Finally, the feasibility of the FLGR forwarding mode is verified and the performance of FLGR protocol is analyzed via simulation. Simulation results show that the proposed FLGR forwarding mode can effectively avoid the routing void problem. Compared with existing protocols, the FLGR protocol has lower routing overhead, and a higher packet delivery rate in a sparse network.


2021 ◽  
Author(s):  
Khanh-Van Nguyen ◽  
Chi-Hieu Nguyen ◽  
Phi Le Nguyen ◽  
Tien Van Do ◽  
Imrich Chlamtac

AbstractA quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+$$\epsilon$$ ϵ )-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771759 ◽  
Author(s):  
Yalin Nie ◽  
Haijun Wang ◽  
Yujie Qin ◽  
Zeyu Sun

When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.


2010 ◽  
Vol 17 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Siyuan Chen ◽  
Yu Wang ◽  
Xiang-Yang Li ◽  
Xinghua Shi

Sign in / Sign up

Export Citation Format

Share Document