scholarly journals Switched parasitic patch antenna array using thirteen hexagonal shaped elements

Author(s):  
Junwei. Lu ◽  
Anthony Stark ◽  
David Thiel
Author(s):  
M.W. Rousstia ◽  
A. Shamsafar ◽  
J. Zhao ◽  
S.C. Pires ◽  
J. Teixeira ◽  
...  

2018 ◽  
Vol 61 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Mohammad Mosalanejad ◽  
Ilja Ocket ◽  
Charlotte Soens ◽  
Guy A. E. Vandenbosch

Author(s):  
Mahesh B. Kadu ◽  
Neela Rayavarapu

Abstract In this research article, a compact wideband stack patch antenna array integrated with compact stack electromagnetic band gap (EBG) structure for multiple input multiple output (MIMO) application is proposed. The wide resonance bandwidth is achieved at 2.45 GHz band by stack arrangement of compact meander line slot driven and parasitic patch elements. The isolation bandwidth is matched with resonance bandwidth with the design of a compact stack L slot EBG structure. The polarization diversity and three-layer EBG structure ensure an enhancement in isolation level. To validate the performance of the proposed stack antenna array, a prototype was fabricated and tested for different MIMO parameters. The measured result confirms the effectiveness of the proposed antenna array in a diverse MIMO environment.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4753
Author(s):  
Md Nazim Uddin ◽  
Sangjo Choi

A corporate feeding antenna array with parasitic patches has been investigated previously for millimeter-wave applications due to its high gain and wide bandwidth. However, the parasitic patch integration in the uniformly powered and spaced patch antenna array led to a high sidelobe level (SLL). In this study, we designed a non-uniformly powered and spaced corporate feeding network to feed a 12-element parasitic patch-integrated microstrip antenna array for SLL reduction at 28 GHz in the millimeter-wave band. In the power divider, we arranged two one-to-six unequally feeding power dividers from the opposite side to feed 12 antenna elements with non-uniform excitation, and effectively controlled the spacing between antenna elements. The two opposite input ports from the power divider were fed 180° out-of-phase for good isolation between the adjacent antenna elements. To verify the SLL reduction effect from the non-uniform spacing in the array, we designed two non-uniformly powered patch antenna arrays with uniform and non-uniform spacing. In the measurement, the non-uniformly powered and spaced patch antenna array demonstrated a nearly 16.56 dBi boresight gain and −17.27 dB SLL, which is nearly 2 dB lower than the uniformly spaced counterpart. Finally, we expect that the non-uniformly powered and spaced high gain patch antenna array with a low SLL will be suitable for millimeter-wave communication applications.


Author(s):  
Wogong Zhang ◽  
Nannan Li ◽  
Ziyang Zheng ◽  
Liyun Shi ◽  
Zhiyong Li ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Haiyue Wang ◽  
Lianwen Deng ◽  
Heng Luo ◽  
Junsa Du ◽  
Daohan Zhou ◽  
...  

The microwave wireless power transfer (MWPT) technology has found a variety of applications in consumer electronics, medical implants and sensor networks. Here, instead of a magnetic resonant coupling wireless power transfer (MRCWPT) system, a novel MWPT system based on a frequency reconfigurable (covering the S-band and C-band) microstrip patch antenna array is proposed for the first time. By switching the bias voltage-dependent capacitance value of the varactor diode between the larger main microstrip patch and the smaller side microstrip patch, the working frequency band of the MWPT system can be switched between the S-band and the C-band. Specifically, the operated frequencies of the antenna array vary continuously within a wide range from 3.41 to 3.96 GHz and 5.7 to 6.3 GHz. For the adjustable range of frequencies, the return loss of the antenna array is less than −15 dB at the resonant frequency. The gain of the frequency reconfigurable antenna array is above 6 dBi at different working frequencies. Simulation results verified by experimental results have shown that power transfer efficiency (PTE) of the MWPT system stays above 20% at different frequencies. Also, when the antenna array works at the resonant frequency of 3.64 GHz, the PTE of the MWPT system is 25%, 20.5%, and 10.3% at the distances of 20 mm, 40 mm, and 80 mm, respectively. The MWPT system can be used to power the receiver at different frequencies, which has great application prospects and market demand opportunities.


Sign in / Sign up

Export Citation Format

Share Document