scholarly journals Extracting Axial Depth and Trajectory Trend Using Astigmatism, Gaussian Fitting, and CNNs for Protein Tracking

Author(s):  
Kristofer delas Penas ◽  
Mariia Dmitrieva ◽  
Joel Lefebvre ◽  
Helen Zenner ◽  
Edward Allgeyer ◽  
...  
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 187
Author(s):  
Marcelo A. Soto ◽  
Alin Jderu ◽  
Dorel Dorobantu ◽  
Marius Enachescu ◽  
Dominik Ziegler

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1295
Author(s):  
Anghong Yu ◽  
Chuanzhen Wang ◽  
Haizeng Liu ◽  
Md. Shakhaoath Khan

Three products hydrocyclone screen (TPHS) can be considered as the combination of a conventional hydrocyclone and a cylindrical screen. In this device, particles are separated based on size under the centrifugal classification coupling screening effect. The objective of this work is to explore the characteristics of fluid flow in TPHS using the computational fluid dynamics (CFD) simulation. The 2 million grid scheme, volume fraction model, and linear pressure–strain Reynolds stress model were utilized to generate the economical grid-independence solution. The pressure profile reveals that the distribution of static pressure was axisymmetric, and its value was reduced with the increasing axial depth. The maximum and minimum were located near the tangential inflection point of the feed inlet and the outlets, respectively. However, local asymmetry was created by the left tangential inlet and the right screen underflow outlet. Furthermore, at the same axial height, the static pressure gradually decreased along the wall to the center. Near the cylindrical screen, the pressure difference between the inside and the outside cylindrical screen dropped from positive to negative as the axial depth increased from −35 to −185 mm. Besides, TPHS shows similar distributions of turbulence intensity I, turbulence kinetic energy k, and turbulence dissipation rate ε; i.e., the values fell with the decrease in axial height. Meanwhile, from high to low, the pressure values are distributed in the feed chamber, the cylindrical screen, and conical vessel; the value inside the screen was higher than the outer value.


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


2020 ◽  
Author(s):  
Richard W. Taylor ◽  
Cornelia Holler ◽  
Reza Gholami Mahmoodabadi ◽  
Michelle Küppers ◽  
Houman Mirzaalian Dastjerdi ◽  
...  

The mobility of proteins and lipids within the cell, sculpted oftentimes by the organisation of the membrane, reveals a great wealth of information on the function and interaction of these molecules as well as the membrane itself. Single particle tracking has proven to be a vital tool to study the mobility of individual molecules and unravel details of their behaviour. Interferometric scattering (iSCAT) microscopy is an emerging technique well suited for visualising the diffusion of gold nanoparticle-labelled membrane proteins to a spatial and temporal resolution beyond the means of traditional fluorescent labels. We discuss the applicability of interferometric single particle tracking (iSPT) microscopy to investigate the minutia in the motion of a protein through measurements visualising the mobility of the epidermal growth factor receptor in various biological scenarios on the live cell.


2017 ◽  
Vol 112 (3) ◽  
pp. 508a
Author(s):  
James A. Brozik ◽  
Carlo Barnaba ◽  
Adam O. Barden ◽  
Linda Agyen ◽  
Sean L. Sheridan

2018 ◽  
Vol 47 (12) ◽  
pp. 1230006
Author(s):  
王平春 Wang Pingchun ◽  
陈廷娣 Chen Tingdi ◽  
周安然 Zhou Anran ◽  
韩 飞 Han Fei ◽  
王元祖 Wang Yuanzu ◽  
...  

Optik ◽  
2019 ◽  
Vol 198 ◽  
pp. 163253
Author(s):  
Neng Xu ◽  
Lizhi Sheng ◽  
Chen Chen ◽  
Yao Li ◽  
Tong Su ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document