A low temperature coefficient voltage reference utilizing BiCMOS compensation technique

Author(s):  
Yi Huang ◽  
Li Zhu ◽  
Chun Cheung ◽  
Laleh Najafizadeh
2012 ◽  
Vol 588-589 ◽  
pp. 839-842 ◽  
Author(s):  
Zhi Cheng Hu ◽  
Zhi Hua Ning ◽  
Le Nian He

A low temperature coefficient, high voltage detection circuit used in Power over Ethernet is proposed. This circuit realizes the detection comparison without utilizing an extra voltage reference circuit and comparator while the temperature coefficient of the threshold voltage is as low as that of a regular bandgap reference. The proposed detection circuit is implemented in CSMC 0.5μm 60V BCD process, Cadence Spectre simulation results show that the temperature coefficient of the threshold voltage is 66.5 ppm/°C over the temperature range of -40°C to 125°C, and the maximum variation of the threshold voltage is 2.7% under all corners.


2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7193
Author(s):  
Jie Shen ◽  
Houpeng Chen ◽  
Shenglan Ni ◽  
Zhitang Song

Based on the standard 40 nm Complementary Metal Oxide Semiconductor (CMOS) process, a curvature compensation technique is proposed. Two low-voltage, low-power, high-precision bandgap voltage reference circuits are designed at a 1.2 V power supply. By adding IPTAT (positive temperature coefficient current) and ICTAT (negative temperature coefficient current) to the output resistance, the first-order compensation bandgap voltages can be obtained. Meanwhile, the third high-order compensation current is also superimposed on the same resistance. We make use of the collector current of the bipolar transistor to compensate for the nonlinear term of VBE. The simulation results show that TC (temperature coefficient) of the first circuit reference could be reduced from 29.1 × 10−6/°C to 5.71 × 10−6/°C over the temperature range of −25 to 125 °C after temperature compensation. The second one could be reduced from 17 × 10−6/°C to 5.22 × 10−6/°C.


2019 ◽  
Vol 28 (13) ◽  
pp. 1950214
Author(s):  
Ze-kun Zhou ◽  
Hongming Yu ◽  
Yue Shi ◽  
Zhuo Wang ◽  
Bo Zhang

A high-precision bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. An exponential curvature-compensation method is first adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking (ZTCPT) with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Verification results of the BGR proposed in this paper, which is implemented in 0.35-[Formula: see text]m BiCMOS process, illustrate that the TC of 1.4[Formula: see text]ppm/∘C is realized under the power supply voltage of 3[Formula: see text]V and the power supply rejection of the proposed circuit is [Formula: see text][Formula: see text]dB without any filter capacitor.


Sign in / Sign up

Export Citation Format

Share Document