scholarly journals An Ultra-Low Temperature-Coefficient CMOS Voltage Reference

Author(s):  
H. C. Lai ◽  
Z. M. Lin
2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740069 ◽  
Author(s):  
Liangwei Dong ◽  
Yueli Hu

A novel low-voltage low-power CMOS voltage reference independent of temperature is presented in this design. After considering the combined effect of (1) a perfect suppression of the temperature dependence of mobility; (2) the compensation of the channel length modulation effect on the temperature coefficient, a temperature coefficient of 10 ppm/[Formula: see text]C is achieved. Moreover, by adopting the subthreshold MOSFETs, there are no resistors used in the proposed structure. Therefore, the maximum supply current measured at the maximum supply voltage is 70 nA and at 80[Formula: see text]C. The circuit can be used as a voltage reference for high performance and low power dissipation on a single chip.


2012 ◽  
Vol 588-589 ◽  
pp. 839-842 ◽  
Author(s):  
Zhi Cheng Hu ◽  
Zhi Hua Ning ◽  
Le Nian He

A low temperature coefficient, high voltage detection circuit used in Power over Ethernet is proposed. This circuit realizes the detection comparison without utilizing an extra voltage reference circuit and comparator while the temperature coefficient of the threshold voltage is as low as that of a regular bandgap reference. The proposed detection circuit is implemented in CSMC 0.5μm 60V BCD process, Cadence Spectre simulation results show that the temperature coefficient of the threshold voltage is 66.5 ppm/°C over the temperature range of -40°C to 125°C, and the maximum variation of the threshold voltage is 2.7% under all corners.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450107 ◽  
Author(s):  
JUN-DA CHEN ◽  
CHENG-KAI YE

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.


2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


Sign in / Sign up

Export Citation Format

Share Document