Design of a Readout Circuit Chip for a Cosmic Ray Muon Detector with Multi-Angular Acceptance

Author(s):  
Sijie Chen ◽  
Tingcun Wei ◽  
Nan Chen ◽  
Wei He ◽  
Jianfu Liu ◽  
...  
2000 ◽  
Vol 17 (2) ◽  
pp. 171-175 ◽  
Author(s):  
R. W. Clay ◽  
Z. Kurban ◽  
A. H. Maghrabi ◽  
N. R. Wild

AbstractPractical astronomy is usually taught using optical telescopes or, more rarely, radio telescopes. For a similar cost, complementary studies may be made of astrophysical particles through the use of a modestly sized muon detector. Such a detector records the arrival of cosmic ray particles that have traversed the heliosphere and the rate of muon detections reflects the flux of those particles. That flux is controlled by the day to day properties of the heliosphere which is in a state of constant change as the outflowing solar wind is affected by solar activity. As a consequence, a laboratory muon detector, whose count rate depends on the state of the heliosphere, can be an interesting and useful teaching tool that is complementary to optical or radio studies of the Sun.


2017 ◽  
Vol 13 (S335) ◽  
pp. 69-74
Author(s):  
A. Dal Lago ◽  
C. R. Braga ◽  
R. R. S. de Mendonca ◽  
M. Rockenbach ◽  
E. Echer ◽  
...  

AbstractThe Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.


2005 ◽  
Vol 36 (12) ◽  
pp. 2357-2362 ◽  
Author(s):  
K. Munakata ◽  
T. Kuwabara ◽  
J.W. Bieber ◽  
P. Evenson ◽  
R. Pyle ◽  
...  
Keyword(s):  

2012 ◽  
Vol 50 (6) ◽  
pp. 700-711 ◽  
Author(s):  
A.H. Maghrabi ◽  
H. Al Harbi ◽  
Z.A. Al-Mostafa ◽  
M.N. Kordi ◽  
S.M. Al-Shehri
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
A. H. Maghrabi ◽  
R. N. Alotaibi ◽  
M. M. Almutayri ◽  
M. S. Garawi

The rate of the detected cosmic ray muons depends on the atmospheric mass, height of pion production level, and temperature. Corrections for the changes in these parameters are importance to know the properties of the primary cosmic rays. In this paper, the effect of atmospheric mass, represented here by the atmospheric pressure, on the cosmic ray was studied using data from the KACST muon detector during the 2002–2012 period. The analysis was conducted by calculating the barometric coefficient (α) using regression analysis between the two parameters. The variation ofαover different time scales was investigated. The results revealed a seasonal cycle ofαwith a maximum in September and a minimum in March. Data from Adelaide muon detector were used, and different monthly variation was found. The barometric coefficient displays considerable variability at the interannual scale. Study of the annual variations ofαindicated cyclic variation with maximums between 2008 and 2009 and minimums between 2002 and 2003. This variable tendency is found to be anticorrelated with the solar activity, represented by the sunspot number. This finding was compared with the annual trend ofαfor the Adelaide muon detector for the same period of time, and a similar trend was found.


2016 ◽  
Vol 12 (S328) ◽  
pp. 130-133 ◽  
Author(s):  
Rafael R. S. de Mendonça ◽  
Carlos. R. Braga ◽  
Ezequiel Echer ◽  
Alisson Dal Lago ◽  
Marlos Rockenbach ◽  
...  

AbstractIt is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.


Sign in / Sign up

Export Citation Format

Share Document