A material-general energy prediction model for milling machine tools

Author(s):  
Hannah Budinoff ◽  
Raunak Bhinge ◽  
David Dornfeld
Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 678-683
Author(s):  
Shailendra Pawanr ◽  
Girish Kant Garg ◽  
Srikanta Routroy

Author(s):  
Guoyong Zhao ◽  
Yu Su ◽  
Guangming Zheng ◽  
Yugang Zhao ◽  
Chunxiao Li

Most of the existing energy-consumption models of machine tools are related to specific machine components and hence cannot be applied to other machine tools with different specifications. In order to help operators optimize machining parameters for improving energy efficiency, the tool tip cutting specific energy prediction model based on machining parameters and tool wear in milling is developed, which is independent of the standby power of machine tools and the spindle no-load power. Then, the prediction accuracy of the proposed model is verified with dry milling AISI 1045 steel experiments. Finally, the influence of machining parameters and tool wear on tool tip cutting specific energy is studied. The developed model is independent of machine components, so it can reveal the influence of machining parameters and tool wear on tool tip cutting specific energy. The tool tip cutting specific energy reduces with the increase in the cutting depth, side cutting depth, feed rate, and cutting speed, while increases linearly as the tool wears gradually. The research results are helpful to formulate efficient and energy-saving processing schemes on various milling machines.


Author(s):  
Ronay Ak ◽  
Moneer M. Helu ◽  
Sudarsan Rachuri

Accurate prediction of the energy consumption is critical for energy-efficient production systems. However, the majority of existing prediction models aim at providing only point predictions and can be affected by uncertainties in the model parameters and input data. In this paper, a prediction model that generates prediction intervals (PIs) for estimating energy consumption of a milling machine is proposed. PIs are used to provide information on the confidence in the prediction by accounting for the uncertainty in both the model parameters and the noise in the input variables. An ensemble model of neural networks (NNs) is used to estimate PIs. A k-nearest-neighbors (k-nn) approach is applied to identify similar patterns between training and testing sets to increase the accuracy of the results by using local information from the closest patterns of the training sets. Finally, a case study that uses a dataset obtained by machining 18 parts through face-milling, contouring, slotting and pocketing, spiraling, and drilling operations is presented. Of these six operations, the case study focuses on face milling to demonstrate the effectiveness of the proposed energy prediction model.


Author(s):  
Raunak Bhinge ◽  
Jinkyoo Park ◽  
Kincho H. Law ◽  
David A. Dornfeld ◽  
Moneer Helu ◽  
...  

Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian process (GP) regression, a nonparametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed by any part of the machine using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.


Author(s):  
Jinkyoo Park ◽  
Kincho H. Law ◽  
Raunak Bhinge ◽  
Nishant Biswas ◽  
Amrita Srinivasan ◽  
...  

Using a machine learning approach, this study investigates the effects of machining parameters on the energy consumption of a milling machine tool, which would allow selection of optimal operational strategies to machine a part with minimum energy. Data-driven prediction models, built upon a nonlinear regression approach, can be used to gain an understanding of the effects of machining parameters on energy consumption. In this study, we use the Gaussian Process to construct the energy prediction model for a computer numerical control (CNC) milling machine tool. Energy prediction models for different machining operations are constructed based on collected data. With the collected data sets, optimum input features for model selection are identified. We demonstrate how the energy prediction models can be used to compare the energy consumption for the different operations and to estimate the total energy usage for machining a generic part. We also present an uncertainty analysis to develop confidence bounds for the prediction model and to provide insight into the vast parameter space and training required to improve the accuracy of the model. Generic parts are machined to test and validate the prediction model constructed using the Gaussian Process and we consistently achieve an accuracy of over 95 % on the total predicted energy.


2020 ◽  
Vol 275 ◽  
pp. 115402 ◽  
Author(s):  
Yan He ◽  
Pengcheng Wu ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Fei Tao ◽  
...  

2020 ◽  
Vol 2020 (0) ◽  
pp. S13107
Author(s):  
Hozumi KANABE ◽  
Shumpei IKUSHIMA ◽  
Jumpei KUSUYAMA ◽  
Yohichi NAKAO

2018 ◽  
Vol 189 (3) ◽  
pp. 192-205
Author(s):  
Monika Nowak ◽  
Agnieszka Terelak-Tymczyna

The article presents safety issues related to on-site machining with the use of portable machine tools. Their advantage is the possibility of machining elements at places in which they are used. This especially refers to large-size constructions, welded elements and any items whose disassembly is technically difficult. The authors present tasks performed by the operators of portable machining equipment, working conditions, construction and characteristic features of portable machine tools on the example of a portable boring machine, milling machine and flange facing machine. The presented characteristics can influence the safety of work with these machines. The information given in the article were used to asses risk at the position of a portable machine tool operator. The assessment was conducted using the Risk Score method taking into account four stages of using portable machine tools, i.e. transport, assembly/disassembly, machining and maintenance. The result of the conducted risk analysis is the proposal of possible risk reducing actions. Due to the specificity of the operation of portable machine tools which significantly impedes the development of a machine tool which would be safe in and of itself, the proposed actions refer mainly to organisational solutions. The work presents also the thesis that it is possible to decrease the risk at this position thanks to the use of numerical control in a portable machine tool. Such a solution may reduce exposure to some identified threats. The issue is presented on the example of a prototype of a portable flange facing machine developed in the Institute of Mechanical Technology ZUT in Szczecin.


2019 ◽  
Vol 295 ◽  
pp. 67-72
Author(s):  
Zhong Peng Zheng ◽  
Xin Yang Jiang ◽  
Xin Jin

In order to improve the dynamic stability of precision micro slitting turn-milling machine tools, reduce or avoid the vibration problem during the cutting process, optimize the machine structure and processing parameters, the modal analysis of precision micro slitting turn-milling machine tool based on hammer experimental method was researched. In this paper, by analyzing the mechanism of precision micro slitting turn-milling machine tools, the multi degree-of-freedom mathematical vibration model of precision slitting turn-milling machine tools is constructed. The precision micro turn-milling machine tool is analyzed based on the hammer experiment analysis. The modal analysis obtained the first five natural frequencies and resonance speeds of the precision micro slitting turn-milling machine tool,including ST26, NN-25UB8K2 and NN-20UB87. The research results show that hammer experimental method can evaluate the vibration modal analysis of precision micro slitting turn-milling machine tools to some extent. The experimental modal analysis results guide and optimize the structural design and processing technology of precision micro slitting turn-milling machine tools.


Sign in / Sign up

Export Citation Format

Share Document