A generic energy prediction model of machine tools using deep learning algorithms

2020 ◽  
Vol 275 ◽  
pp. 115402 ◽  
Author(s):  
Yan He ◽  
Pengcheng Wu ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Fei Tao ◽  
...  
Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 678-683
Author(s):  
Shailendra Pawanr ◽  
Girish Kant Garg ◽  
Srikanta Routroy

Author(s):  
Guoyong Zhao ◽  
Yu Su ◽  
Guangming Zheng ◽  
Yugang Zhao ◽  
Chunxiao Li

Most of the existing energy-consumption models of machine tools are related to specific machine components and hence cannot be applied to other machine tools with different specifications. In order to help operators optimize machining parameters for improving energy efficiency, the tool tip cutting specific energy prediction model based on machining parameters and tool wear in milling is developed, which is independent of the standby power of machine tools and the spindle no-load power. Then, the prediction accuracy of the proposed model is verified with dry milling AISI 1045 steel experiments. Finally, the influence of machining parameters and tool wear on tool tip cutting specific energy is studied. The developed model is independent of machine components, so it can reveal the influence of machining parameters and tool wear on tool tip cutting specific energy. The tool tip cutting specific energy reduces with the increase in the cutting depth, side cutting depth, feed rate, and cutting speed, while increases linearly as the tool wears gradually. The research results are helpful to formulate efficient and energy-saving processing schemes on various milling machines.


Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 68
Author(s):  
Mouhamadou Saliou Diallo ◽  
Sid Ahmed Mokeddem ◽  
Agnès Braud ◽  
Gabriel Frey ◽  
Nicolas Lachiche

Industry 4.0 is characterized by the availability of sensors to operate the so-called intelligent factory. Predictive maintenance, in particular, failure prediction, is an important issue to cut the costs associated with production breaks. We studied more than 40 publications on predictive maintenance. We point out that they focus on various machine learning algorithms rather than on the selection of suitable datasets. In fact, most publications consider a single, usually non-public, benchmark. More benchmarks are needed to design and test the generality of the proposed approaches. This paper is the first to define the requirements on these benchmarks. It highlights that there are only two benchmarks that can be used for supervised learning among the six publicly available ones we found in the literature. We also illustrate how such a benchmark can be used with deep learning to successfully train and evaluate a failure prediction model. We raise several perspectives for research.


Author(s):  
Raunak Bhinge ◽  
Jinkyoo Park ◽  
Kincho H. Law ◽  
David A. Dornfeld ◽  
Moneer Helu ◽  
...  

Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian process (GP) regression, a nonparametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed by any part of the machine using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Sign in / Sign up

Export Citation Format

Share Document