Real-time open-platform-based control of cooperating industrial robotic manipulators

Author(s):  
D.P. Garg ◽  
A. Fath ◽  
A. Martinez
2002 ◽  
Vol 35 (1) ◽  
pp. 43-48 ◽  
Author(s):  
C. Bellini ◽  
F. Panepinto ◽  
S. Panzieri ◽  
G. Ulivi

Author(s):  
Mohd Faiz Rohani ◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin ◽  
Salwani Mohd Daud

Global warming is referred to the rise in average surface temperatures on earth primarily due to the Greenhouse Gases (GHG) emissions such as Carbon Dioxide (CO<sub>2</sub>). Monitoring the emissions, either direct or indirect from the industrial processes, is important to control or to minimize their impact on the environment. Most of the existing environmental monitoring system is being designed and developed for normal environment monitoring. Hence, the aim of this project is to develop industrial CO<sub>2 </sub>emission monitoring system which implements industrial Open Platform Communications (OPC) protocol in an embedded microcontroller. The software algorithm based on OPC data format has been designed and programmed into the Arduino microcontroller to interface the sensor data to any existing industrial OPC compliant Supervisory Control and Data Acquisition (SCADA) system<strong>. </strong>The system has been successfully tested in a lab with the suitable environment for real-time CO<sub>2 </sub>emissions measurement. The real-time measurement data has been shown in an industrial SCADA application which indicates successful implementation of the OPC communications protocol.


Author(s):  
Andreas Kahmen ◽  
Manfred Weck

Process and machine tool condition monitoring are the keys to an increasing degree of automation and consequently to an increasing productivity in manufacturing. The realisation of monitoring functionality demands an extension of the control system. The prerequisite for these extensions are open interfaces in the NC-kernel. Nowadays controls with open NC-kernel interfaces are available on the market. However these interfaces are vendor specific solutions that do not allow the reuse of monitoring software in different controls. To overcome these limitations a platform with vendor neutral open real-time interface for the integration of monitoring functionality into the NC-kernel is presented in this paper. Additionally two realisations of the integration platform for different target systems are described.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5591 ◽  
Author(s):  
Alexandru Ioana ◽  
Adrian Korodi

Communication protocols are evolving continuously as the interfacing and interoperability requirements are the foundation of Industry 4.0 and Industrial Internet of Things (IIoT), and the Open Platform Communication Unified Architecture (OPC UA) protocol is a major enabling technology. OPC UA was adopted by the industry, and research is continuously carried out to extend and to improve its capabilities, to fulfil the growing requirements of specific industries and hierarchical levels. Consistent issues that have to be approached are related to the latest specifications and the real-time context that could extend the applicability of the protocol and bring significant benefits in terms of speed, data volumes, footprint, security. The real-time context is essential in the automotive sector and it is highly developed within some specific protocols. The current work approaches first the conceptual analysis to improve the OPC UA interfacing using the Publish-Subscribe mechanism, focusing on real-time constraints and role distribution between entities, and considering some well-founded interfacing strategies from the automotive sector. The conceptual analysis is materialized into a solution that takes OPC UA Publish-Subscribe over User Datagram Protocol (UDP) mechanism to the next level by developing a synchronization algorithm and a multithreading broker application to obtain real time responsiveness and increased efficiency by lowering the publisher and the subscriber footprint and computational effort, reducing the difficulty of sending larger volumes of data for various subscribers and the charge on the network and services in terms of polling and filtering. The proof of concept is evaluated and the results prove the efficiency of the approach and the solution.


2007 ◽  
Vol 3 (S249) ◽  
pp. 35-41 ◽  
Author(s):  
Martin Dominik ◽  
Keith Horne ◽  
Alasdair Allan ◽  
Nicholas J. Rattenbury ◽  
Yiannis Tsapras ◽  
...  

AbstractGravitational microlensing observations will lead to a census of planets that orbit stars of different populations. From 2008, ARTEMiS will provide an expert system that allows to adopt a three-step strategy of survey, follow-up and anomaly monitoring of gravitational microlensing events that is capable of detecting planets of Earth mass and below. The SIGNALMEN anomaly detector, an integral part, has already demonstrated its performance during a pilot season. Embedded into eSTAR, ARTEMiS serves as an open platform that links with existing microlensing campaigns. Real-time visualization of ongoing events along with an interpretation moreover allows to communicate “Science live to your home” to the general public.


Author(s):  
Nazareno de Oliveira Pacheco ◽  
Giovani Batista ◽  
Anderson Fontes Estuqui ◽  
Lucas da Silva

The commercial equipment that carries out the measurement of temperature has a high cost. Therefore, this article describes the development of a temperature measurement equipment, which uses a microcontrolled platform, responsible for managing the data of the collected temperature signals and making available the acquired information, so that they can be verified in real time at the measurement site, or remotely. The construction of the temperature measurement equipment was performed using open platform hardware / software, where performance tests were carried out with the objective of developing a temperature measurement equipment that has measurement quality and low cost.


Sign in / Sign up

Export Citation Format

Share Document