Finite time control of nonlinear underactuated systems using terminal sliding surface

Author(s):  
Sin Ho Lee ◽  
Jin Bae Park ◽  
Yoon Ho Choi
2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984789 ◽  
Author(s):  
Yan Xia ◽  
Wei Xie ◽  
Jiachen Ma

This article proposes a control strategy that combines the double power reaching law with the modified terminal sliding mode for tracking tasks of rigid robotic manipulators quickly and accurately. As a significant novelty, double power reaching law can reach the sliding surface in finite time when the system is in any initial state. At the same time, modified terminal sliding surface guarantees the system that position and velocity error converge to be zero approximately. In other words, the control law is able to make the system slip to the equilibrium point in a finite time and improves the speed of the system approaching and sliding modes. The simulation results demonstrate the practical implementation of the control strategy, verify its robustness of more accurate tracking and faster disturbance rejection, and weaken the chattering phenomenon more effectively compared with the conventional terminal sliding mode controller.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Shuai Song ◽  
Ines Tejado Balsera ◽  
Leipo Liu ◽  
Lei Zhang

The synchronization of two fractional-order complex chaotic systems is discussed in this paper. The parameter uncertainty and external disturbance are included in the system model, and the synchronization of the considered chaotic systems is implemented based on the finite-time concept. First, a novel fractional-order nonsingular terminal sliding surface which is suitable for the considered fractional-order systems is proposed. It is proven that once the state trajectories of the system reach the proposed sliding surface they will converge to the origin within a given finite time. Second, in terms of the established nonsingular terminal sliding surface, combining the fuzzy control and the sliding mode control schemes, a novel robust single fuzzy sliding mode control law is introduced, which can force the closed-loop dynamic error system trajectories to reach the sliding surface over a finite time. Finally, using the fractional Lyapunov stability theorem, the stability of the proposed method is proven. The proposed method is implemented for synchronization of two fractional-order Genesio-Tesi chaotic systems with uncertain parameters and external disturbances to verify the effectiveness of the proposed fractional-order nonsingular terminal fuzzy sliding mode controller.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Wang ◽  
Lin Yin ◽  
Shaojie Wang ◽  
Shirui Miao ◽  
Tantan Du ◽  
...  

This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS). Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 346
Author(s):  
Hao Jia ◽  
Chen Guo ◽  
Lina Zhao ◽  
Zhao Xu

This work uses the sliding mode control method to conduct the finite-time synchronization of chaotic systems. The utilized parameter selection principle differs from conventional methods. The designed controller selects the unknown parameters independently from the system model. These parameters enable tracking and prediction of the additional variables that affect the chaotic motion but are difficult to measure. Consequently, the proposed approach avoids the limitations of selecting the unknown parameters that are challenging to measure or modeling the parameters solely within the relevant system. This paper proposes a novel nonsingular terminal sliding surface and demonstrates its finite-time convergence. Then, the adaptive law of unknown parameters is presented. Next, the adaptive sliding mode controller based on the finite-time control idea is proposed, and its finite-time convergence and stability are discussed. Finally, the paper presents numerical simulations of chaotic systems with either the same or different structures, thus verifying the proposed method’s applicability and effectiveness.


Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


Author(s):  
Emmanuel Cruz‐Zavala ◽  
Tonametl Sanchez ◽  
Emmanuel Nuño ◽  
Jaime A. Moreno

Sign in / Sign up

Export Citation Format

Share Document