Energy-efficient optimal thrust allocation for spherical underwater robot

Author(s):  
Bhuneshwar Prasad ◽  
Alok Agrawal ◽  
Vinothkumar Viswanathan ◽  
Parikshit Yadav ◽  
Rajesh Kumar ◽  
...  
2010 ◽  
Vol 29 (5) ◽  
pp. 547-570 ◽  
Author(s):  
Iuliu Vasilescu ◽  
Carrick Detweiler ◽  
Marek Doniec ◽  
Daniel Gurdan ◽  
Stefan Sosnowski ◽  
...  

Author(s):  
A Coraddu ◽  
S Donnarumma ◽  
K Chu ◽  
M Figari

Dynamic positioning systems are most commonly used in offshore operations. They provide an automated controlling of position and heading of the vessel using its own thrusters to compensate environmental disturbances. The allocation of total required force over the available actuators is a complex task, as DP-systems are over-actuated. Therefore, one of the main challenges faced by the industry is constantly seeking to improve the systems efficiency for both sustainability and economic reasons. Furthermore, it is important to evaluate the performance of a DP vessel under critical conditions. In this paper, the authors aim to compare different thrust allocation logics based on the optimisation of different objective functions. Using a simple validation tool, the authors were able to investigate the overall efficiency of a dynamic positioning propulsion system and its ability to operate when a failure occurs. 


2018 ◽  
Vol 65 (4) ◽  
pp. 39-48
Author(s):  
Jerzy Garus ◽  
Bogdan Żak

Abstract This article addresses the practical aspects of the synthesis of an automatic control system for the thrust allocation strategy in the propulsion system of an unmanned underwater vehicle. The vehicle under consideration is a robot submarine equipped with a multi-propulsion system providing four degrees of freedom of movement. The power distribution algorithms are based on limited optimisation methods that allow the determination, on the basis of generalised torques and forces, of how much thrust is required to be produced by individual propulsors. Considering the issue of power distribution as a task of square and linear programming, two algorithms of thrust allocation were proposed and compared. The conducted model tests made it possible to evaluate their quality and efficiency in relation to speed and computational complexity.


2013 ◽  
Vol 210 ◽  
pp. 326-332
Author(s):  
Jerzy Garus

This paper focuses on a problem of power distribution in a multi-thrusters propulsion system of an underwater robot. The presented thrust allocation methods are directed towards minimization of energy expenditures necessary to obtain required control. A power/thrust relation is mapped by a linear function. Such approach allows using linear programming (LP) techniques to finding an optimal thrust allocation for demanded propulsive forces and moments. The LP models of thrust distribution are regarded for unconstrained and constrained allocation control.


2011 ◽  
Author(s):  
B. Smitha Shekar ◽  
M. Sudhakar Pillai ◽  
G. Narendra Kumar

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Ye.Ye. Nikitin

The current situation in the sphere of district heating is analysed on the basis of use of the cognitive approach. The presence of closed chains of cause-effect relationships of negative factors and conflicts of target settings of the subjects in the field of district heating is shown. The conceptual model of energy efficient modernization of district heating systems is proposed. This model includes indicators of the current status of heat sources, networks and heat consumers, energetic and economic models, restrictions, procedure of forming and analysis of the mutual influence of the recommended projects. The quantitative data on indicators of the current state of district heating systems of the cities of Ukraine are presented. The interrelation between indicators of the current state and projects of energy efficient modernization of district heating systems is shown. Assessment of energy self-sufficiency of municipal district heating systems on condition of thermal modernization of buildings is carried out. The creation of energy management systems at the district heating enterprises is proposed. Bib. 6, Fig. 7, Tab. 5.


Sign in / Sign up

Export Citation Format

Share Document