scholarly journals Energy Output Simulation of the Floating PV System of Karangkates Hydropower Dam in East Java, Indonesia

Author(s):  
Elieser Tarigan
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2019 ◽  
Vol 8 (3) ◽  
pp. 8441-8444 ◽  

The performance of 100 kWp roof-top grid-connected PV system was evaluated. The plant was installed at PGDM building in Sharda University, Greater Noida in northern India. The plant was monitored from March 2018 to February 2019. Performance parameters such as system efficiency, performance ratio, capacity utilization factor, and degradation rate were obtained. The plant performance result was compared with the estimated results obtained from SAM and PVsyst software. The total annual energy output was found to be 16426 kWh. The annual average system efficiency and capacity utilization factor of the plant was found to be 15.62 % and 14.72 % respectively. The annual performance ratio and annual degradation rate were found to be 76% and 1.28%/year respectively. The annual performance ratio obtained from SAM and PVsyst was found to be 78% and 82% respectively. It was noticed that the measured performance ratio was highly relative with the one obtained from SAM software.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2701 ◽  
Author(s):  
Saeed Abdul-Ganiyu ◽  
David A Quansah ◽  
Emmanuel W Ramde ◽  
Razak Seidu ◽  
Muyiwa S. Adaramola

The main objective of this paper is to experimentally assess the real-life outdoor performance of a photovoltaic-thermal (PVT) module against a conventional photovoltaic (PV) system in a hot humid tropical climate in Ghana. An experimental setup comprising a water-based mono-crystalline silicon PVT and an ordinary mono-crystalline silicon PV was installed on a rooftop at the Kwame Nkrumah University of Science and Technology in Kumasi and results evaluated for the entire year of 2019. It was observed that the annual total output energy of PV module was 194.79 kWh/m2 whereas that of the PVT for electrical and thermal outputs were 149.92 kWh/m2 and 1087.79 kWh/m2, respectively. The yearly average daily electrical energy yield for the PV and PVT were 3.21 kWh/kWp/day and 2.72 kWh/kWp/day, respectively. The annual performance ratios for the PV and PVT (based on electrical energy output only) were 79.2% and 51.6%, respectively, whilst their capacity factors were, respectively, 13.4% and 11.3%. Whereas the highest monthly mean efficiency recorded for the PV was 12.7%, the highest combined measured monthly mean electrical/thermal efficiency of the PVT was 56.1%. It is also concluded that the PVT is a worthy prospective alternative energy source in off-grid situations.


2018 ◽  
Vol 155 ◽  
pp. 01033 ◽  
Author(s):  
V.T. Dinh ◽  
Yuhao Yan

This article presents a short-term forecast of electric energy output of a photovoltaic (PV) system towards Tomsk city, Russia climate variations (module temperature and solar irradiance). The system is located at Institute of Non-destructive Testing, Tomsk Polytechnic University. The obtained results show good agreement between actual data and prediction values.


2018 ◽  
Vol 5 ◽  
pp. 104-118
Author(s):  
Jamison Ghinis ◽  
Clifford Leslie

The focus of this paper is a meta-study analysis of the efficiency of hybrid thermal and photovoltaic (PV) energy systems and how various materials and specific temperature ranges for thermoelectric (TE) generation can increase their efficiency. This meta-study focuses on papers obtained from ACS NANO, Scopus, Web of Science and Nature which discuss the theoretical and practical implementation of TE and PV systems, with various hybrid systems being considered. Analysed is the Figure of Merit from various hybrid TE and PV integrated systems, the effect of energy efficiency and power generation on different PV system temperatures, and output over area. The total efficiency of the hybrid system is found to have a considerable effect in all papers analysed, with an increase of 5 to 10 percent efficiency in energy output due to the thermoelectric generator (TEG) section, with this maximum efficiency occurring approximately in a 25 kelvin range [1]. A maximum output of 125 W peaks can be maintained for systems efficiently over 600 W/m2 modules, this is an up to 5 percent total efficiency increase in power output in the previously discussed 25 kelvin range [2]. The papers proposed demonstrate the more efficient implementations, potential for further study and implementation of hybrid systems within specific temperature and operating conditions.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 192
Author(s):  
Zainab Usman ◽  
Joseph Tah ◽  
Henry Abanda ◽  
Charles Nche

Climate change and global warming have triggered a global increase in the use of renewable energy for various purposes. In recent years, the photovoltaic (PV)-system has become one of the most popular renewable energy technologies that captures solar energy for different applications. Despite its popularity, its adoption is still facing enormous challenges, especially in developing countries. Experience from research and practice has revealed that installed PV-systems significantly underperform. This has been one of the major barriers to PV-system adoption, yet it has received very little attention. The poor performance of installed PV-systems means they do not generate the required electric energy output they have been designed to produce. Performance assessment parameters such as performance yields and performance ratio (PR) help to provide mathematical accounts of the expected energy output of PV-systems. Many reasons have been advanced for the disparity in the performance of PV-systems. This study aims to analyze the factors that affect the performance of installed PV-systems, such as geographical location, solar irradiance, dust, and shading. Other factors such as multiplicity of PV-system components in the market and the complexity of the permutations of these components, their types, efficiencies, and their different performance indicators are poorly understood, thus making it difficult to optimize the efficiency of the system as a whole. Furthermore, mathematical computations are presented to prove that the different design methods often used for the design of PV-systems lead to results with significant differences due to different assumptions often made early on. The methods for the design of PV-systems are critically appraised. There is a paucity of literature about the different methods of designing PV-systems, their disparities, and the outcomes of each method. The rationale behind this review is to analyze the variations in designs and offer far-reaching recommendations for future studies so that researchers can come up with more standardized design approaches.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1878 ◽  
Author(s):  
João Torres ◽  
Carlos Fernandes ◽  
João Gomes ◽  
Bonfiglio Luc ◽  
Giovinazzo Carine ◽  
...  

Solar concentrator photovoltaic collectors are able to deliver energy at higher temperatures for the same irradiances, since they are related to smaller areas for which heat losses occur. However, to ensure the system reliability, adequate collector geometry and appropriate choice of the materials used in these systems will be crucial. The present work focuses on the re-design of the Concentrating Photovoltaic system (C-PV) collector reflector presently manufactured by the company Solarus, together with an analysis based on the annual assessment of the solar irradiance in the collector. An open-source ray tracing code (Soltrace) is used to accomplish the modelling of optical systems in concentrating solar power applications. Symmetric parabolic reflector configurations are seen to improve the PV system performance when compared to the conventional structures currently used by Solarus. The parabolic geometries, using either symmetrically or asymmetrically placed receivers inside the collector, accomplished both the performance and cost-effectiveness goals: for almost the same area or costs, the new proposals for the PV system may be in some cases 70% more effective as far as energy output is concerned.


2021 ◽  
Vol 13 (8) ◽  
pp. 4505
Author(s):  
Chila Kaewpraek ◽  
Liaqat Ali ◽  
Md. Arfeen Rahman ◽  
Mohammad Shakeri ◽  
M. S. Chowdhury ◽  
...  

The rapid rise in the number of fossil fuel uses over the last few decades has increased carbon dioxide (CO2) emissions. The purpose of implementing renewable energy solutions, such as solar, hydro, wind, biomass, and other renewable energy sources, is to mitigate global climate change worldwide. Solar energy has received more attention over the last few decades as an alternative source of energy, and it can play an essential role in the future of the energy industry. This is especially true of energy solutions that reduce land use, such as off-grid and on-grid solar rooftop technologies. This study aims to evaluate the energy conversion efficiency of photovoltaic (PV) systems in tropical environments. It also explores the effect of growing plants beneath PV panels. Two identical grid-connected PV systems—each containing five solar panels—were installed. The overall power production of each PV system was about 1.4 kWp. All the collected data were processed and analysed in the same way and by the same method. The PV systems were installed in two different environments—one with the possibility of growing the plants beneath the PV panels (PViGR module) and one with no possibility of growing the plants beneath the PV panels (PViSR module). The experiments were conducted in the Bo Yang District of Songkhla, Thailand over a 12-month period. Our findings indicate that green roof photovoltaic (GRPV) systems can produce around 2100 kWh of electricity in comparison to the 2000 kWh produced by other solar energy systems. Thereby, growing plants beneath PV panels increases electricity production efficiency by around 2%. This difference comes from the growing of plants underneath GRPV systems. Plants do not only help to trap humidity underneath GRPV systems but also help to cool the PV panels by absorbing the temperature beneath GRPV systems. Thus, in the production of electrical energy; the system was clearly showing significant differences in the mentioned results of both PV solar systems, which are evident for great energy efficiency performances in the future.


Sign in / Sign up

Export Citation Format

Share Document