The design and analysis of a six-degree of freedom robotic arm

Author(s):  
Omar Olwan ◽  
Asem Matan ◽  
Mohammad Abdullah ◽  
Jumana Abu-Khalaf
Author(s):  
Hussein Mohammed Ali ◽  
Yasir Hashim ◽  
Ghadah Alaadden Al-Sakkal

<p><span>This study presents the model, design, and construction of the Arduino based robotic arm, which functions across a distance as it is controlled through a mobile application. A six degree of freedom robotic arm has been designed and implemented for the purpose of this research. The design controlled by the Arduino platform receives orders from the user’s mobile application through wireless controlling signals, that is Bluetooth. The arm is made up of five rotary joints and an end effector, where rotary motion is provided by the servomotor. Each link has been first designed using solid works and then printed by 3D printer. The assembly of the parts of the robot and the motor’s mechanical shapes produce the final prototype of the arm. The Arduino has been programmed to provide rotation to each corresponding servo motor to the sliders in the designed mobile application for usage from distance.</span></p>


2021 ◽  
Vol 2125 (1) ◽  
pp. 012015
Author(s):  
JiaLei Su

Abstract Single-joint modular design can reduce the work intensity of designers, and also can broaden the combination form of multi-degree-of-freedom robotic arm. In order to adapt to the changes of multiple degrees of freedom and multiple loads, this paper designs a series of standard modules with similar components and the same standard interface, but with different sizes only, and chooses different drive components according to the load when designing the size, and then designs the size of other parts according to the size of the drive components. The final combination of this series of modules into different degrees of freedom robotic arm, such as three degrees of freedom robotic arm, four degrees of freedom robotic arm or even six degrees of freedom robotic arm. In this paper, the most widely used six-degree-of-freedom robotic arm is used as an example, and a detailed design form is proposed.


2021 ◽  
pp. 107754632199731
Author(s):  
He Zhu ◽  
Shuai He ◽  
Zhenbang Xu ◽  
XiaoMing Wang ◽  
Chao Qin ◽  
...  

In this article, a six-degree-of-freedom (6-DOF) micro-vibration platform (6-MVP) based on the Gough–Stewart configuration is designed to reproduce the 6-DOF micro-vibration that occurs at the installation surfaces of sensitive space-based instruments such as large space optical loads and laser communications equipment. The platform’s dynamic model is simplified because of the small displacement characteristics of micro-vibrations. By considering the multifrequency line spectrum characteristics of micro-vibrations and the parameter uncertainties, an iterative feedback control strategy based on a frequency response model is designed, and the effectiveness of the proposed control strategy is verified by performing integrated simulations. Finally, micro-vibration experiments are performed with a 10 kg load on the platform. The results of these micro-vibration experiments show that after several iterations, the amplitude control errors are less than 3% and the phase control errors are less than 1°. The control strategy presented in this article offers the advantages of a simple algorithm and high precision and it can also be used to control other similar micro-vibration platforms.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Sign in / Sign up

Export Citation Format

Share Document