Walking motions with high margin-of-stability values

Author(s):  
Tomoyuki Iwasaki ◽  
Shogo Okamoto ◽  
Yasuhiro Akiyama ◽  
Takashi Inagaki ◽  
Yoji Yamada
Keyword(s):  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomasz Cudejko ◽  
James Gardiner ◽  
Asangaedem Akpan ◽  
Kristiaan D’Août

AbstractPostural and walking instabilities contribute to falls in older adults. Given that shoes affect human locomotor stability and that visual, cognitive and somatosensory systems deteriorate during aging, we aimed to: (1) compare the effects of footwear type on stability and mobility in persons with a history of falls, and (2) determine whether the effect of footwear type on stability is altered by the absence of visual input or by an additional cognitive load. Thirty participants performed standing and walking trials in three footwear conditions, i.e. conventional shoes, minimal shoes, and barefoot. The outcomes were: (1) postural stability (movement of the center of pressure during eyes open/closed), (2) walking stability (Margin of Stability during normal/dual-task walking), (3) mobility (the Timed Up and Go test and the Star Excursion Balance test), and (4) perceptions of the shoes (Monitor Orthopaedic Shoes questionnaire). Participants were more stable during standing and walking in minimal shoes than in conventional shoes, independent of visual or walking condition. Minimal shoes were more beneficial for mobility than conventional shoes and barefoot. This study supports the need for longitudinal studies investigating whether minimal footwear is more beneficial for fall prevention in older people than conventional footwear.


1974 ◽  
Vol 66 (1) ◽  
pp. 81-96 ◽  
Author(s):  
P. J. Bryant

Waves of small but finite amplitude in shallow water can occur as periodic wave trains of permanent shape in two known forms, either as Stokes waves for the shorter wavelengths or as cnoidal waves for the longer wavelengths. Calculations are made here of the periodic wave trains of permanent shape which span uniformly the range of increasing wavelength from Stokes waves to cnoidal waves and beyond. The present investigation is concerned with the stability of such permanent waves to periodic disturbances of greater or equal wavelength travelling in the same direction. The waves are found to be stable to infinitesimal and to small but finite disturbances of wavelength greater than the fundamental, the margin of stability decreasing either as the fundamental wave becomes more nonlinear (i.e. contains more harmonics), or as the wavelength of the periodic disturbance becomes large compared with the fundamental wavelength. The decreasing margin of stability is associated with an increasing loss of spatial periodicity of the wave train, to the extent that small but finite disturbances can cause a form of interaction between consecutive crests of the disturbed wave train. In such a case, a small but finite disturbance of wavelength n times the fundamental wavelength converts the wave train into n interacting wave trains. The amplitude of the disturbance subharmonic is then nearly periodic, the time scale being the time taken for repetitions of the pattern of interactions. When the disturbance is of the same wavelength as the permanent wave, the wave is found to be neutrally stable both to infinitesimal and to small but finite disturbances.


2015 ◽  
Vol 35 (2) ◽  
pp. 123-125 ◽  
Author(s):  
A. A. Ignat’ev ◽  
V. A. Karakozova ◽  
S. A. Ignat’ev

2018 ◽  
Vol 42 (6) ◽  
pp. 626-635 ◽  
Author(s):  
James A Sturk ◽  
Edward D Lemaire ◽  
Emily Sinitski ◽  
Nancy L Dudek ◽  
Markus Besemann ◽  
...  

Background: A transfemoral amputee’s functional level can be classified from K-level 0 (lowest) to K-level 4 (highest). Knowledge of the biomechanical differences between K3 and K4 transfemoral amputation could help inform clinical professionals and researchers in amputee care and gait assessment. Objectives: Explore gait differences between K3- and K4-level transfemoral amputation across different surface conditions. Study design: Cross-sectional study. Methods: Four K3 and six K4 transfemoral amputation and 10 matched able-bodied individuals walked in a virtual environment with simulated level and non-level surfaces on a self-paced treadmill. Stability measures included medial-lateral margin of stability, step parameters, and gait variability (standard deviations for speed, temporal-spatial parameters, root-mean-square of medial-lateral trunk acceleration). Results: K3 walked slower than K4 with wider steps, greater root-mean-square of medial-lateral trunk acceleration, and greater medial-lateral margin of stability standard deviations, indicating their stability was further challenged. K3 participants had greater asymmetry in double support time and trunk acceleration root-mean-square in the medial-lateral direction, but similar asymmetry overall. K3 participants had larger differences from AB and in more parameters than K4, although K4 differed from AB in trunk acceleration root-mean-square in the medial-lateral direction, walking speed, and double support time standard deviations. Conclusion: The findings improve our understanding of K3 and K4 transfemoral amputation gait on slopes and simulated uneven surfaces. Clinical relevance High performing and community ambulatory transfemoral amputees cannot match the ambulatory abilities of ablebodied individuals. Understanding gait differences between these groups under conditions that challenge balance is required to develop rehabilitation protocols and prosthetic componentry targeted at improving transfemoral amputee gait and overall mobility in their chosen environment.


2019 ◽  
Vol 95 ◽  
pp. 109319 ◽  
Author(s):  
Hajime Ohtsu ◽  
Shinya Yoshida ◽  
Tadayoshi Minamisawa ◽  
Toshiaki Takahashi ◽  
Shin-ichi Yomogida ◽  
...  

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Myunghee Kim ◽  
Hannah Lyness ◽  
Tianjian Chen ◽  
Steven H. Collins

Abstract Prosthesis features that enhance balance are desirable to people with transtibial amputation. Ankle inversion/eversion compliance is intended to improve balance on uneven ground, but its effects remain unclear on level ground. We posited that increasing ankle inversion/eversion stiffness during level-ground walking would reduce balance-related effort by assisting in recovery from small disturbances in frontal-plane motions. We performed a pilot test with an ankle-foot prosthesis emulator programmed to apply inversion/eversion torques in proportion to the deviation from a nominal inversion/eversion position trajectory. We applied a range of stiffnesses to clearly understand the effect of the stiffness on balance-related effort, hypothesizing that positive stiffness would reduce effort while negative stiffness would increase effort. Nominal joint angle trajectories were calculated online as a moving average over several steps. In experiments with K3 ambulators with unilateral transtibial amputation (N = 5), stiffness affected step-width variability, average step width, margin of stability, intact-foot center of pressure variability, and user satisfaction (p ≤ 0.05, Friedman's test), but not intact-limb evertor average, intact-limb evertor variability, and metabolic rate (p ≥ 0.38, Friedman's test). Compared to zero stiffness, high positive stiffness reduced step-width variability by 13%, step width by 3%, margin of stability by 3%, and intact-foot center of pressure variability by 14%, whereas high negative stiffness had opposite effects and decreased satisfaction by 63%. The results of this pilot study suggest that positive ankle inversion stiffness can reduce active control requirements during level walking.


2020 ◽  
Vol 28 (5) ◽  
pp. 680-685
Author(s):  
Alison R. Oates ◽  
Aaron Awdhan ◽  
Catherine Arnold ◽  
Joyce Fung ◽  
Joel L. Lanovaz

Adding haptic input may improve balance control and help prevent falls in older adults. This study examined the effects of added haptic input via light touch on a railing while walking. Participants (N = 53, 75.9 ± 7.9 years) walked normally or in tandem (heel to toe) with and without haptic input. During normal walking, adding haptic input resulted in a more cautious and variable gait pattern, reduced variability of center of mass acceleration and margin of stability, and increased muscle activity. During tandem walking, haptic input had minimal effect on step parameters, decreased lower limb muscle activity, and increased cocontraction at the ankle closest to the railing. Age was correlated with step width variability, stride length variability, stride velocity, variability of medial-lateral center of mass acceleration, and margin of stability for tandem walking. This complex picture of sensorimotor integration in older adults warrants further exploration into added haptic input during walking.


2018 ◽  
Author(s):  
Yoshiro Okubo ◽  
Matthew A Brodie ◽  
Daina L Sturnieks ◽  
Cameron Hicks ◽  
Hilary Carter ◽  
...  

AbstractINTRODUCTIONThis study aimed to determine if repeated exposure to unpredictable trips and slips while walking can improve balance recovery responses when predictive gait alterations (e.g. slowing down) are minimised.METHODSTen young adults walked on a 10-m walkway that induced slips and trips in fixed and random locations. Participants were exposed to a total of 12 slips, 12 trips and 6 non-perturbed walks in three conditions: 1) right leg fixed location, 2) left leg fixed location and 3) random leg and location. Kinematics during non-perturbed walks and previous and recovery steps were analysed.RESULTSThroughout the three conditions, participants walked with similar gait speed, step length and cadence(p>0.05). Participants’ extrapolated centre of mass (XCoM) was anteriorly shifted immediately before slips at the fixed location (p<0.01), but this predictive gait alteration did not transfer to random perturbation locations. Improved balance recovery from trips in the random location was indicated by increased margin of stability and step length during recovery steps (p<0.05). Changes in balance recovery from slips in the random location was shown by reduced backward XCoM displacement and reduced slip speed during recovery steps (p<0.05).CONCLUSIONSEven in the absence of most predictive gait alterations, balance recovery responses to trips and slips were improved through exposure to repeated unpredictable perturbations. A common predictive gait alteration to lean forward immediately before a slip was not useful when the perturbation location was unpredictable. Training balance recovery with unpredictable perturbations may be beneficial to fall avoidance in everyday life.


Sign in / Sign up

Export Citation Format

Share Document