Combinations of Adaptive Filters within the Multilinear Forms

Author(s):  
Ionut-Dorinel Ficiu ◽  
Cristian Stanciu ◽  
Cristian Anghel ◽  
Constantin Paleologu ◽  
Lucian Stanciu
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3555
Author(s):  
Laura-Maria Dogariu ◽  
Constantin Paleologu ◽  
Jacob Benesty ◽  
Cristian-Lucian Stanciu ◽  
Claudia-Cristina Oprea ◽  
...  

The Kalman filter represents a very popular signal processing tool, with a wide range of applications within many fields. Following a Bayesian framework, the Kalman filter recursively provides an optimal estimate of a set of unknown variables based on a set of noisy observations. Therefore, it fits system identification problems very well. Nevertheless, such scenarios become more challenging (in terms of the convergence and accuracy of the solution) when the parameter space becomes larger. In this context, the identification of linearly separable systems can be efficiently addressed by exploiting tensor-based decomposition techniques. Such multilinear forms can be modeled as rank-1 tensors, while the final solution is obtained by solving and combining low-dimension system identification problems related to the individual components of the tensor. Recently, the identification of multilinear forms was addressed based on the Wiener filter and most well-known adaptive algorithms. In this work, we propose a tensorial Kalman filter tailored to the identification of multilinear forms. Furthermore, we also show the connection between the proposed algorithm and other tensor-based adaptive filters. Simulation results support the theoretical findings and show the appealing performance features of the proposed Kalman filter for multilinear forms.


2006 ◽  
Vol 65 (6) ◽  
pp. 567-579 ◽  
Author(s):  
Jose Velazquez-Lopez ◽  
Juan Carlos Sanchez-Garcia ◽  
Hector Manuel Perez-Meana

Author(s):  
Alberto Carini ◽  
Markus V. S. Lima ◽  
Hamed Yazdanpanah ◽  
Simone Orcioni ◽  
Stefania Cecchi

Author(s):  
K.R. Shankarkumar ◽  
Gokul Kumar

: Filtering is an important step in the field of image processing to suppress the required parts or to remove any artifacts present in it. There are different types of filters like low pass, high pass, Band pass, IIR, FIR and adaptive filtering etc.., in these filters adaptive filters is an important filter because it is used to remove the noisy signal and images. Least Mean Square filter is a type of an adaptive filtering which is used to remove the noises present in the medical images. The working of LMS is based on the minimization of the difference between the error images using a closed loop feedback. Therefore presented technique called as Q-CSKA. Here the CSKA performs its operation in stages which is based on the nucleus stage. In the traditional CSKA the nucleus stage is depend on the parallel prefix adder in this work it is replaced by the QCA adder. The QCA adder utilizes the less area compared to PPA and it can be realized in Nanometer range also. For multiplexers, And OR Invert, OR and Invert logic is used to reduce the area and delay. Due to these advantages of the QCA, AOI-OAI logic the proposed method outperformed the LMS implementation in area, power, and accuracy and delay, this based five type image noise of medical pictures related to the best technique is out comes. It helps to medicinal practitioner to resolve the symptoms of patient with ease.


2013 ◽  
Vol 543 ◽  
pp. 302-305
Author(s):  
Daniele Tosi ◽  
Massimo Olivero ◽  
Alberto Vallan ◽  
Guido Perrone

The paper analyzes the feasibility of cost-effective fiber sensors for the measurement of small vibrations, from low to medium-high frequencies, in which the complexity of the measurement is moved from expensive optics to cheap electronics without losing too much performance thanks to signal processing algorithms. Two optical approaches are considered: Bragg gratings in standard telecom fibers, which represent the most common type of commercial fiber sensors, and specifically developed sensors made with plastic optical fibers. In both cases, to keep the overall cost low, vibrations are converted into variations of the light intensity, although this makes the received signal more sensitive to noise. Then, adaptive filters and advanced spectral estimation techniques are used to mitigate noise and improve the sensitivity. Preliminary results have demonstrated that the combined effect of these techniques can yield to a signal-to-noise improvement of about 30 dB, bringing the proposed approaches to the level of the most performing sensors for the measurement of vibrations.


Sign in / Sign up

Export Citation Format

Share Document