Optimized Gain Proportional Navigation law for compensation a Delay in Line-Of-Sight Rate

Author(s):  
Hesham A. Abdin ◽  
Hany M. Arnaoot ◽  
Adel M. Soliman
2014 ◽  
Vol 118 (1202) ◽  
pp. 435-451 ◽  
Author(s):  
J.H. Xiong ◽  
S.J. Tang ◽  
J. Guo ◽  
T.N. Wang

AbstractAn adaptive sliding mode guidance law guiding the line-of-sight angular rate to converge to zero was highly appraised. However, compared with the conventional proportional navigation law, adaptive sliding mode guidance law leads to large acceleration demand of the interceptor before the line-of-sight angular rate converging to zero, especially in a situation where the target has strong manoeuvrability as well as high velocity. In this paper, a strategy making the coefficients of the guidance law vary according to a fuzzy rule is proposed. Smaller guidance coefficients are selected at the beginning of the terminal guidance. Therefore, the guidance command is reduced and a smaller acceleration of the interceptor is incurred. As the coefficients grow to the fixed and desired values, the line-of-sight angular rate converges to zero rapidly, so that the convergence to the sliding surface is guaranteed. It is concluded that the fuzzy variable coefficients strategy is highly effective for tail-chase, head-on interception and head pursuit engagements as shown in the simulations.


Author(s):  
Ryan P. Shaw ◽  
David M. Bevly

This paper presents a new approach for the guidance and control of a UGV (Unmanned Ground Vehicle). An obstacle avoidance algorithm was developed using an integrated system involving proportional navigation (PN) and a nonlinear model predictive controller (NMPC). An obstacle avoidance variant of the classical proportional navigation law generates command lateral accelerations to avoid obstacles, while the NMPC is used to track the reference trajectory given by the PN. The NMPC utilizes a lateral vehicle dynamic model. Obstacle avoidance has become a popular area of research for both unmanned aerial vehicles and unmanned ground vehicles. In this application an obstacle avoidance algorithm can take over the control of a vehicle until the obstacle is no longer a threat. The performance of the obstacle avoidance algorithm is evaluated through simulation. Simulation results show a promising approach to conditionally implemented obstacle avoidance.


2014 ◽  
Vol 10 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Liang Yan ◽  
Ji-guang Zhao ◽  
Huai-rong Shen ◽  
Yuan Li

2005 ◽  
Vol 29 (2) ◽  
pp. 195-209
Author(s):  
Dany Dionne ◽  
Hannah Michalska

A new adaptive proportional navigation law for interception of a maneuvering target is presented. The approach employs a bank of guidance laws and an on-line governor to select the guidance law in effect at each time instant. The members of the bank are the proportional navigation law and a companion law suitable for a target moving with a constant acceleration. The governor is a hierarchical decision rule which uses the outputs from a maneuver detector and the available a-priori information about the expected number of evasive maneuvers. Simulation results demonstrate that the adaptive approach leads to a reduction in the miss distance as compared with cases where only a single non-adaptive guidance law is available.


2004 ◽  
Vol 37 (6) ◽  
pp. 433-436
Author(s):  
V.V. Alexandrov ◽  
O.Yu. Cberkasov ◽  
E.S. Manuilovich

Author(s):  
Sheng Sun ◽  
Di Zhou ◽  
Jingyang Zhou ◽  
Kok Lay Teo

The true proportional navigation guidance law, the augmented proportional navigation guidance law, or the adaptive sliding-mode guidance law, is designed based on the planar target-to-missile relative motion dynamics. By a proper construction of a nonlinear Lyapunov function for the line-of-sight angular rates in the three-dimensional guidance dynamics, it is shown that the three guidance laws mentioned above are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first-order lag, we design three-dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (3) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. Thus, the proposed nonlinear Lyapunov function for the line-of-sight angular rates is a generalized function for designing three-dimensional guidance laws. Simulation results of a missile interception mission show that the proposed guidance laws are highly effective.


Author(s):  
P Gurfil

This paper derives a new non-linear guidance law aimed at interception of highly manoeuvring targets. The guidance law is developed based on the theory of control Lyapunov functions (CLFs), a methodology for universal stabilization of non-linear systems which is also inverse optimal with respect to some performance measure. The three-dimensional guidance dynamics are formulated in a fixed-line-of-sight coordinate system, yielding matching between the target and missile accelerations. Closed-form expressions for the CLF guidance commands are given. Simulation shows that the new guidance scheme significantly outperforms augmented proportional navigation in short-range engagements.


2021 ◽  
pp. jeb.238493
Author(s):  
Caroline H. Brighton ◽  
Katherine E. Chapman ◽  
Nicholas C. Fox ◽  
Graham K. Taylor

The aerial hunting behaviours of birds are strongly influenced by flight morphology and ecology, but little is known of how this relates to the behavioural algorithms guiding flight. Here we use GPS loggers to record the attack trajectories of captive-bred Gyrfalcons (Falco rusticolus) during their maiden flights against robotic aerial targets, which we compare to existing flight data from Peregrines (Falco peregrinus). The attack trajectories of both species are well modelled by a proportional navigation (PN) guidance law, which commands turning in proportion to the angular rate of the line-of-sight to target, at a guidance gain. However, naïve Gyrfalcons operate at significantly lower values of N than Peregrines, producing slower turning and a longer path to intercept. Gyrfalcons are less manoeuvrable than Peregrines, but physical constraint is insufficient to explain the lower values of N we found, which may reflect either the inexperience of the individual birds or ecological adaptation at the species level. For example, low values of N promote the tail-chasing behaviour that is typical of wild Gyrfalcons and which apparently serves to tire their prey in a prolonged high-speed pursuit. Likewise, during close pursuit of typical fast evasive prey, PN will be less prone to being thrown off by erratic target manoeuvres at low guidance gain. The fact that low-gain PN successfully models the maiden attack flights of Gyrfalcons suggests that this behavioural algorithm is embedded in a guidance pathway ancestral to the clade containing Gyrfalcons and Peregrines, though perhaps with much deeper evolutionary origins.


Sign in / Sign up

Export Citation Format

Share Document