Detailed thermal resistance model for characterization of the overall effective thermal conductivity of a flat heat pipe

Author(s):  
Sivanand Somasundaram ◽  
Kevin Bagnall ◽  
Solomon Adera ◽  
Bin He ◽  
Mengyao Wei ◽  
...  
Author(s):  
Xianming Dai ◽  
Levey Tran ◽  
Fanghao Yang ◽  
Bo Shi ◽  
Ronggui Yang ◽  
...  

Thermal management of high power electronics is becoming a critical issue as the power density of semiconductors increasing. The flat heat pipe (FHP) is widely used in the electronic cooling because it is possible to interface with flat electronics packages without additional conductive and interface resistances. The heat flux of the next generation electronics may exceed 100 W/cm2, which is significantly beyond the cooling capabilities of commercially available FHP today. A novel micro scale hybrid wick was developed in this study to improve the effective thermal conductivity and working heat flux of FHP. The hybrid wick consists of multilayer of sintered copper woven meshes to promote the capillary pressure and microchannels underneath to reduce the flow resistance. The analysis indicates that the effective thermal conductivity and the capillary limit of flat heat pipe (FHPs) with this novel micro scale hybrid wicking structure can be significantly enhanced as compared to the reported FHPs. In this paper, the design of this innovative micro scale hybrid wick is illustrated. The fabrication and charging processes are also outlined. The preliminary experimental results show that the effective thermal conductivity can approach 12,270 W/(m·K), which is more than 30 times better than pure copper at approximate 91.3 W input heat.


2020 ◽  
pp. 174425912098003
Author(s):  
Travis V Moore ◽  
Cynthia A. Cruickshank ◽  
Ian Beausoleil-Morrison ◽  
Michael Lacasse

The purpose of this paper is to investigate the potential for calculation methods to determine the thermal resistance of a wall system containing vacuum insulation panels (VIPs) that has been experimentally characterised using a guarded hot box (GHB) apparatus. The VIPs used in the wall assembly have not been characterised separately to the wall assembly, and therefore exact knowledge of the thermal performance of the VIP including edge effect is not known. The calculations and simulations are completed using methods found in literature as well as manufacturer published values for the VIPs to determine the potential for calculation and simulation methods to predict the thermal resistance of the wall assembly without the exact characterisation of the VIP edge effect. The results demonstrate that disregarding the effect of VIP thermal bridges results in overestimating the thermal resistance of the wall assembly in all calculation and simulation methods, ranging from overestimates of 21% to 58%. Accounting for the VIP thermal bridges using the manufacturer advertised effective thermal conductivity of the VIPs resulted in three methods predicting the thermal resistance of the wall assembly within the uncertainty of the GHB results: the isothermal planes method, modified zone method and the 3D simulation. Of these methods only the 3D simulation can be considered a potential valid method for energy code compliance, as the isothermal planes method requires too drastic an assumption to be valid and the modified zone method requires extrapolating the zone factor beyond values which have been validated. The results of this work demonstrate that 3D simulations do show potential for use in lieu of guarded hot box testing for predicting the thermal resistance of wall assemblies containing both VIPs and steel studs. However, knowledge of the VIP effective thermal conductivity is imperative to achieve reasonable results.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
H. M. Yin ◽  
G. H. Paulino ◽  
W. G. Buttlar ◽  
L. Z. Sun

By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.


2014 ◽  
Vol 18 (5) ◽  
pp. 1613-1618 ◽  
Author(s):  
Jie Fan ◽  
Na Zhu ◽  
Zhi Liu ◽  
Qian Cheng ◽  
Yong Liu

Warm retention property of fabric is one of the most important factors for clothing comfortability. The worm retention efficiency of a multilayer fabric with hierarchic inner structure was investigated based on its geometric feature. The thermal resistance of the multilayer fabric increases as the layer of the fabric increases.


1995 ◽  
Vol 117 (1) ◽  
pp. 75-81 ◽  
Author(s):  
A. K. Mallik ◽  
G. P. Peterson

An experimental investigation of vapor deposited micro heat pipe arrays was conducted using arrays of 34 and 66 micro heat pipes occupying 0.75 and 1.45 percent of the cross-sectional area, respectively. The performance of wafers containing the arrays was compared with that of a plain silicon wafer. All of the wafers had 8 × 8 mm thermofoil heaters located on the bottom surface to simulate the active devices in an actual application. The temperature distributions across the wafers were obtained using a Hughes Probeye TVS Infrared Thermal Imaging System and a standard VHS video recorder. For wafers containing arrays of 34 vapor deposited micro heat pipes, the steady-state experimental data indicated a reduction in the maximum surface temperature and temperature gradients of 24.4 and 27.4 percent, respectively, coupled with an improvement in the effective thermal conductivity of 41.7 percent. For wafers containing arrays of 66 vapor deposited micro heat pipes, the corresponding reductions in the surface temperature and temperature gradients were 29.0 and 41.7 percent, respectively, and the effective thermal conductivity increased 47.1 percent, for input heat fluxes of 4.70 W/cm2. The experimental results were compared with the results of a previously developed numerical model, which was shown to predict the temperature distribution with a high degree of accuracy, for wafers both with and without the heat pipe arrays.


2016 ◽  
Vol 846 ◽  
pp. 500-505
Author(s):  
Wei Jing Dai ◽  
Yi Xiang Gan ◽  
Dorian Hanaor

Effective thermal conductivity is an important property of granular materials in engineering applications and industrial processes, including the blending and mixing of powders, sintering of ceramics and refractory metals, and electrochemical interactions in fuel cells and Li-ion batteries. The thermo-mechanical properties of granular materials with macroscopic particle sizes (above 1 mm) have been investigated experimentally and theoretically, but knowledge remains limited for materials consisting of micro/nanosized grains. In this work we study the effective thermal conductivity of micro/nanopowders under varying conditions of mechanical stress and gas pressure via the discrete thermal resistance method. In this proposed method, a unit cell of contact structure is regarded as one thermal resistor. Thermal transport between two contacting particles and through the gas phase (including conduction in the gas phase and heat transfer of solid-gas interfaces) are the main mechanisms. Due to the small size of particles, the gas phase is limited to a small volume and a simplified gas heat transfer model is applied considering the Knudsen number. During loading, changes in the gas volume and the contact area between particles are simulated by the finite element method. The thermal resistance of one contact unit is calculated through the combination of the heat transfer mechanisms. A simplified relationship between effective thermal conductivity and loading pressure can be obtained by integrating the contact units of the compacted powders.


Sign in / Sign up

Export Citation Format

Share Document