Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System

Author(s):  
Xiao Fu ◽  
Changle Li ◽  
Yilong Hui ◽  
Jie Yang ◽  
Wuchao Pei ◽  
...  
Author(s):  
Jau-Yang Chang ◽  
Jin-Tsong Jeng ◽  
Yung-Hoh Sheu ◽  
Z.-Jie Jian ◽  
Wei-Yeh Chang

AbstractWireless sensor networks with mobile sinks enable a mobile device to move into the sensing area for the purpose of collecting the sensing data. Mobile sinks increase the flexibility and convenience of data gathering in such systems. Taking the energy consumption of the mobile sink into account, the moving distance of the mobile sink must be reduced efficiently. Hence, it is important and necessary to develop an efficient path planning scheme for mobile sinks in large-scale wireless sensor network systems. According to several greedy-based algorithms, we adopt an angle bisector concept to create the moving path for the mobile sink. In this paper, a novel and efficient data collection path planning scheme is proposed to reduce the moving distances and to prolong the lifetimes of mobile sinks in wireless sensor networks. Considering the communication range limitations of sensor nodes and the obstacles within sensing areas, we design an inner center path planning algorithm to reduce the moving distance for the mobile sink. A back-routing avoidance method is included to address the moving path backpropagation problem. We account for the obstacles in sensing area. The reference point of obstacle avoidance is employed to address the obstacle problem. The proposed scheme makes an adaptive decision for creating the moving path of the mobile sink. A suitable moving path planning scheme can be achieved, and the moving distance of the mobile sink can be reduced. The proposed scheme is promising in large-scale wireless sensor networks. When the number of sensor nodes in the sensing area is increased by 50, the proposed scheme yields an average moving distance that is 1.1 km shorter than that of the heuristic tour-planning algorithm, where the sensing area is 5 km × 5 km. Simulation results demonstrate that the proposed data collection path planning scheme outperforms the previously developed greedy-based scheme in terms of the moving paths and moving distances of mobile sinks in wireless sensor networks.


2020 ◽  
Author(s):  
Jau-Yang Chang ◽  
Jin-Tsong Jeng ◽  
Yung-Hoh Sheu ◽  
Z-Jie Jian ◽  
Wei-Yeh Chang

Abstract Wireless sensor networks with mobile sinks enable a mobile device to move into the sensing area for the purpose of collecting the sensing data. Mobile sinks increase the flexibility and convenience of data gathering in such systems. Taking the energy consumption of the mobile sink into account, the moving distance of the mobile sink must be reduced efficiently. Hence, it is important and necessary to develop an efficient path planning scheme for mobile sinks in large-scale wireless sensor network systems. According to several greedy-based algorithms, we adopt an angle bisector concept to create the moving path for the mobile sink. In this paper, a novel and efficient data collection path planning scheme is proposed to reduce the moving distances and to prolong the lifetimes of mobile sinks in wireless sensor networks. Considering the communication range limitations of sensor nodes and the obstacles within sensing areas, we design an inner center path planning algorithm to reduce the moving distance for the mobile sink. A back-routing avoidance method is included to address the moving path backpropagation problem. We account for the obstacles in sensing area. The reference point of obstacle avoidance is employed to address the obstacle problem. The proposed scheme makes an adaptive decision for creating the moving path of the mobile sink. A suitable moving path planning scheme can be achieved, and the moving distance of the mobile sink can be reduced. The proposed scheme is promising in large-scale wireless sensor networks. When the number of sensor nodes in the sensing area is increased by 50, the proposed scheme yields an average moving distance that is 1.1 km shorter than that of the heuristic tour-planning algorithm, where the sensing area is 5 km × 5 km. Simulation results demonstrate that the proposed data collection path planning scheme outperforms the previously developed greedy-based scheme in terms of the moving paths and moving distances of mobile sinks in wireless sensor networks.


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


2021 ◽  
Vol 1856 (1) ◽  
pp. 012016
Author(s):  
Xiaoyu Du ◽  
Qicheng Guo ◽  
Hui Li ◽  
Yanyu Zhang

Author(s):  
Julian Morelli ◽  
Pingping Zhu ◽  
Bryce Doerr ◽  
Richard Linares ◽  
Silvia Ferrari
Keyword(s):  

2012 ◽  
Vol 8 (10) ◽  
pp. 567959 ◽  
Author(s):  
Mingzhong Yan ◽  
Daqi Zhu ◽  
Simon X. Yang

A real-time map-building system is proposed for an autonomous underwater vehicle (AUV) to build a map of an unknown underwater environment. The system, using the AUV's onboard sensor information, includes a neurodynamics model proposed for complete coverage path planning and an evidence theoretic method proposed for map building. The complete coverage of the environment guarantees that the AUV can acquire adequate environment information. The evidence theory is used to handle the noise and uncertainty of the sensor data. The AUV dynamically plans its path with obstacle avoidance through the landscape of neural activity. Concurrently, real-time sensor data are “fused” into a two-dimensional (2D) occupancy grid map of the environment using evidence inference rule based on the Dempster-Shafer theory. Simulation results show a good quality of map-building capabilities and path-planning behaviors of the AUV.


Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.


Sign in / Sign up

Export Citation Format

Share Document